

17 Fevrier 2025

Semi-Discrete Optimal Transport with 10⁹ points ... and beyond Why and How?

Bruno Lévy

Inria - ParMA Laboratoire de Mathématiques d'Orsay

Overview

- 1. Mysteries in the sky
- 2. Optimal Transport
- 3. Semi-Discrete
- 4. Scaling up
- 5. Red-shift distortion

6. Brenier-Monge-Ampere Gravitation

Inría

Vera Rubin - 1962

(nría_

Vera Rubin - 1962 There is more mass than what we observe

There is more mass than what we observe

There is more mass than what we observe

galaxy

lensed galaxy

distant galaxy

galaxy cluster.

bending light

Type la supernovae "standard candles"

Permutter Riess

Type la supernovae "standard candles"

Permutter Riess

The expansion of the Universe is accelerating.

Dark Energy Accelerated Expansion Afterglow Light Development of Dark Ages Pattern Galaxies, Planets, etc. 375,000 yrs. Inflation Quantum luctuations **1st Stars** about 400 million yrs. **Big Bang Expansion** 13.77 billion years

- There seems to be more matter than what we observe...

- The big-bang is big-banging faster than we thought ...

- There seems to be more matter than what we observe...

"dark matter" (but we do not know what it is)

- The big-bang is big-banging faster than we thought ...

"dark energy" (but we do not know what it is)

nnia

Newton

No force \Rightarrow everything moves along straight lines with constant speed Force $\Rightarrow \mathbf{F} = m\mathbf{a}$

Gravity: $\mathbf{F} = -\mathcal{G}m_1m_2/d^2$

Newton

No force \Rightarrow everything moves along straight lines with constant speed Force $\Rightarrow \mathbf{F} = m\mathbf{a}$

Gravity: $\mathbf{F} = -\mathcal{G}m_1m_2/d^2$

GR

Everything moves along « straight lines with constant speed »

Newton

No force \Rightarrow everything moves along straight lines with constant speed Force $\Rightarrow \mathbf{F} = m\mathbf{a}$

Gravity: $\mathbf{F} = -\mathcal{G}m_1m_2/d^2$

GR

Everything moves along « straight lines with constant speed »

$$= 8\pi \mathcal{G} T_{\mu\nu}$$
Mass and energy

Ínría

 $G_{\mu\nu}$

Newton

No force \Rightarrow everything moves along straight lines with constant speed Force $\Rightarrow \mathbf{F} = m\mathbf{a}$

Gravity:
$$\mathbf{F} = -\mathcal{G}m_1m_2/d^2$$

GR

Everything moves along « straight lines with constant speed »

Geometry (meaning of "straight lines with constant speed")

$$= 8\pi \mathcal{G} T_{\mu\nu}$$
Mass and energy

 $G_{\mu\nu}$

Newton

No force \Rightarrow everything moves along straight lines with constant speed Force $\Rightarrow \mathbf{F} = m\mathbf{a}$

Gravity:
$$\mathbf{F} = -\mathcal{G}m_1m_2/d^2$$

GR

Models

Newton GR with lambda and cold dark matter (LCDM) MOND (Modified Newton Dynamics) MAG (Monge-Ampère grativation)

Models Observations

3D maps of the Universe (redshift acquisition surveys)

Newton LCDM MOND MAG

Models

Observations

Newton LCDM MOND MAG 3D maps of the Universe (redshift acquisition surveys) DESI

Inría

Inría

pc/h : parsec (= 3.2 light year)

The millenium simulation project, Max Planck Institute fur Astrophysik

The Universal Swimming Pool

Inría

Caustics and displacement potential

(nría_

Caustics and displacement potential

Inría

Caustics and displacement potential

Ínría

Innía

Connecting the present with the past

Connecting the present with the past

The model

The model

The model

$$\mathbf{G}(\mathbf{r}) = -\nabla\phi(\mathbf{r}) \quad ; \quad \phi(\mathbf{r}) = -m\mathcal{G}\frac{M}{\|\mathbf{r}\|}$$

 $\mathbf{F}_i = m_i \mathbf{G}_i$

 $\mathbf{G}_i = -\mathcal{G} \sum_{\substack{j=1\\j\neq i}}^N \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\|^3}$

The model $\mathbf{F}_i = m_i \mathbf{G}_i$ $\mathbf{G}_{i} = -\mathcal{G}\sum_{\substack{j=1\\j\neq i}}^{N} \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{3}}$ $\mathbf{G}_i = \nabla \phi_i \quad ; \quad \phi_i = -\mathcal{G} \sum_{\substack{j=1\\j \neq i}} \frac{m_j}{\|\mathbf{x}_i - \mathbf{x}_j\|}$

The model $\mathbf{F}_i = m_i \mathbf{G}_i$ $\mathbf{G}_{i} = -\mathcal{G}\sum_{\substack{j=1\\j\neq i}}^{N} \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{3}}$ $\mathbf{G}_{i} = \nabla \phi_{i} \quad ; \quad \phi_{i} = -\mathcal{G} \sum_{\substack{j=1 \\ i \neq i}} \frac{m_{j}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|}$ (F = ma) $\begin{cases} \frac{\partial^2 \mathbf{x}_i}{\partial t^2} &= \nabla \phi_i & \longleftarrow \quad (\mathsf{F} = \mathsf{ma}) \\ \phi_i &= -\mathcal{G} \sum_{\substack{j=1\\ j \neq i}} \frac{m_j}{\|\mathbf{x}_i - \mathbf{x}_j\|} & \text{Gravity for a set of particles} \\ (\mathsf{N}\text{-body}) \end{cases}$ Lagrangian coordinates

$$\rho(\mathbf{x},t)$$

(F=ma)
$$\mathbf{a}(\mathbf{x},t) = \mathbf{G}(\mathbf{x},t) = \nabla \phi(\mathbf{x},t)$$

 $\rho(\mathbf{x},t)$

$$\rho(\mathbf{x},t)$$

(F=ma)

$$\mathbf{a}(\mathbf{x},t) = \mathbf{G}(\mathbf{x},t) = \nabla \phi(\mathbf{x},t)$$

$$\phi(\mathbf{x},t) = -\mathcal{G} \iiint_{V} \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

$$\rho(\mathbf{x},t)$$

(F=ma)

$$\mathbf{a}(\mathbf{x},t) = \mathbf{G}(\mathbf{x},t) = \nabla \phi(\mathbf{x},t)$$

$$\phi(\mathbf{x},t) = -\mathcal{G} \iiint_{V} \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

$$\begin{aligned} \Delta f &= g \\ f(\mathbf{x}) &= \iiint_V K(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) d\mathbf{y} \\ K(\mathbf{x}, \mathbf{y}) &= -\frac{1}{4\pi} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} \end{aligned}$$

(F=ma)
$$\mathbf{a}(\mathbf{x},t) = \mathbf{G}(\mathbf{x},t) =
abla \phi(\mathbf{x},t)$$

$$\phi(\mathbf{x}, t) = -\mathcal{G} \iiint_V \frac{\rho(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} d\mathbf{y}$$

 $\rho(\mathbf{x},t)$

$$\begin{aligned} \Delta f &= g \\ f(\mathbf{x}) &= \iiint_V K(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) d\mathbf{y} \\ K(\mathbf{x}, \mathbf{y}) &= -\frac{1}{4\pi} \frac{1}{\|\mathbf{x} - \mathbf{y}\|} \end{aligned}$$

(F=ma)

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{G}(\mathbf{x}, t) = \nabla \phi(\mathbf{x}, t)$$

 $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \phi$
Velocity field Correction term
(convective derivative)

 $\rho(\mathbf{x},t)$

Gravity for a density field ? Eulerian coordinates

 $\Delta \phi = 4\pi \mathcal{G} \rho$

$$\rho(\mathbf{x},t)$$

(F=ma)
$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \phi$$

 $\Delta \phi = 4\pi \mathcal{G} \rho$

$$\rho(\mathbf{x},t)$$

Gravity for a density field ? Eulerian coordinates (F=ma) $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \phi$ $\Delta \phi = 4\pi \mathcal{G} \rho$ $\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$ (Mass conservation *continuity eqn*)

$$\begin{cases} \partial_{\tau} \mathbf{v} + (\mathbf{v} \cdot \nabla_{x}) \mathbf{v} = -\frac{3}{2\tau} (\nabla_{x} \phi + \mathbf{v}) \\ \partial_{\tau} \rho + \nabla_{x} \cdot (\rho \mathbf{v}) = 0 \\ \Delta \phi = 4\pi \mathcal{G} \frac{\rho - 1}{\tau} \end{cases}$$

The inverse problem

Initial condition (homogeneous)

Redshift acquisition survey

$$\begin{cases} \partial_{\tau} \mathbf{v} + (\mathbf{v} \cdot \nabla_x) \mathbf{v} = -\frac{3}{2\tau} (\nabla_x \phi + \mathbf{v}) \\ \partial_{\tau} \rho + \nabla_x \cdot (\rho \mathbf{v}) = 0 \\ \Delta \phi = 4\pi \mathcal{G} \frac{\rho - 1}{\tau} \end{cases}$$

The inverse problem – least action

The inverse problem – least action

Initial condition (homogeneous)

Redshift acquisition survey

$$I = \frac{1}{2} \int_{\tau_I}^{\tau_F} \int_V (\rho |\mathbf{v}|^2 + \frac{3}{2} |\nabla_x \phi|^2) \tau^{3/2} d^3 \mathbf{x} d\tau$$
$$\rho(., \tau_I) = \rho_I(.) = 1 \quad ; \quad \rho(., \tau_F) = \rho_F(.)$$

The inverse problem – least action

Initial condition (homogeneous)

Redshift acquisition survey

$$I = \frac{1}{2} \int_{\tau_I}^{\tau_F} \int_V \rho |\mathbf{v}|^2 d^3 \mathbf{x} d\tau$$
$$\rho(., \tau_I) = \rho_I(.) = 1 \quad ; \quad \rho(., \tau_F) = \rho_F(.)$$

The inverse problem – Benamou-Brenier thm

Initial condition (homogeneous)

Redshift acquisition survey

Everybody moves along a straight line at constant speed

$$I = \frac{1}{2} \int_{\tau_I}^{\tau_F} \int_V \quad \rho |\mathbf{v}|^2 \quad d^3 \mathbf{x} \ d\tau$$

$$\rho(.,\tau_I) = \rho_I(.) = 1 \quad ; \quad \rho(.,\tau_F) = \rho_F(.)$$

The inverse problem – Benamou-Brenier thm

Initial condition (homogeneous)

Redshift acquisition survey

Which point corresponds to which point?

$$I = \frac{1}{2} \int_{\tau_I}^{\tau_F} \int_V \quad \rho |\mathbf{v}|^2 \quad d^3 \mathbf{x} \ d\tau$$

$$\rho(.,\tau_I) = \rho_I(.) = 1 \quad ; \quad \rho(.,\tau_F) = \rho_F(.)$$

The inverse problem – Benamou-Brenier thm

Initial condition (homogeneous)

Redshift acquisition survey

Which point corresponds to which point?

The inverse problem – Benamou-Brenier thm

The inverse problem – Benamou-Brenier thm

Ínría

(X;µ)

(Y;v)

Two measures
$$\mu$$
, v such that $\int_X d\mu(x) = \int_Y dv(x)$

A map T is a *transport map* between μ and \vee if $\mu(T^1(B)) = \vee(B)$ for any Borel subset B of Y

(X;µ)

A map T is a *transport map* between μ and \vee if $\mu(T^{-1}(B)) = \vee(B)$ for any Borel subset B

(Y;v)

A map T is a *transport map* between μ and ν if $\mu(T^{-1}(B)) = \nu(B)$ for any Borel subset B

(X;µ)

(Y;v)

A map T is a *transport map* between μ and ν if $\mu(T^{-1}(B)) = \nu(B)$ for any Borel subset B (or $\nu = T \# \mu$ the *pushforward* of μ)

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

- Difficult to study
- Constraint (T is a transport map) is complicated
- If μ has an atom (isolated Dirac), it can only be mapped to another Dirac (T needs to be a map)

Monge's problem:

Find a transport map T that minimizes $C(T) = \int_X ||x - T(x)||^2 d\mu(x)$

Kantorovich's problem (1942):

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = dv(y)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = d\mu(x)$

that minimizes
$$\iint_{X \times Y} || x - y ||^2 d_{Y(x,y)}$$

Part. 2 Optimal Transport – Kantorovich

Transport plan – example in 1D

Part. 2 Optimal Transport – Kantorovich

Transport plan – example in 1D

Duality is easier to understand with a discrete version Then we'll go back to the continuous setting.

(DMK): Min <C, γ > $s.t. \begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$

(DMK): Min <C, γ > s.t. $\begin{cases}
P_1 \gamma = u \\
P_2 \gamma = v \\
\gamma \ge 0
\end{cases}$

< u, v > denotes the dot product between u and v

ween u and v s.t. $\begin{cases} P_1 \gamma = u \\ P_2 \gamma = v \\ \gamma \ge 0 \end{cases}$

(DMK):

Min <c, γ >

Consider $\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$P_1 \gamma = u$$

 $P_2 \gamma = v$
 $\gamma \ge 0$

Consider
$$\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

$\begin{array}{l} \mbox{Remark: Sup[} \ \mathcal{I}(\phi,\psi) \ \] = < c, \ \gamma > \ if \ P_1 \ \gamma = u \ and \ P_2 \ \gamma = v \\ \phi \ \in \ IR^m \\ \psi \ \in \ IR^n \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$P_1 \gamma = u$$

 $P_2 \gamma = v$
 $\gamma \ge 0$

Consider
$$\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

$\begin{array}{ll} \mbox{Remark: Sup}[\ \mathcal{I}(\phi,\psi) \] = < c, \ \gamma > \ \mbox{if } P_1 \ \gamma = u \ \mbox{and } P_2 \ \gamma = v \\ & \phi \ \in \ \mbox{IR}^m \\ & \psi \ \in \ \mbox{IR}^n \end{array} = + \infty \ \mbox{otherwise} \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$P_1 \gamma = u$$

 $P_2 \gamma = v$
 $\gamma \ge 0$

Consider
$$\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

 $\begin{array}{ll} \mbox{Remark: Sup[} \ \mathcal{I}(\phi,\psi) \] = < c, \ \gamma > \mbox{if } P_1 \ \gamma = u \ and \ P_2 \ \gamma = v \\ & \phi \ \in \ IR^m \\ & \psi \ \in \ IR^n \end{array} \qquad = +\infty \ otherwise \end{array}$

 $\begin{array}{l} \text{Consider now: Inf} \left[\begin{array}{c} \text{Sup}[\ \mathcal{I}(\phi,\psi) \] \end{array} \right] \\ \gamma \geq 0 \quad \begin{array}{c} \phi \ \in \mathrm{IR}^m \\ \psi \in \mathrm{IR}^n \end{array} \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$P_1 \gamma = u$$

 $P_2 \gamma = v$
 $\gamma \ge 0$

Consider
$$\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

 $\begin{array}{ll} \mbox{Remark: Sup[} \ \mathcal{I}(\phi,\psi) \] = < c, \ \gamma > \mbox{if } P_1 \ \gamma = u \ and \ P_2 \ \gamma = v \\ & \phi \ \in \ IR^m \\ & \psi \ \in \ IR^n \end{array} = + \infty \ otherwise \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.Min \gamma>
P1
$$\gamma = u$$

P2 $\gamma = v$
 $\gamma \ge 0$

Consider
$$\mathcal{I}(\phi, \psi) = \langle c, \gamma \rangle - \langle \phi, P_1 \gamma - u \rangle - \langle \psi, P_2 \gamma - v \rangle$$

 $\begin{array}{ll} \mbox{Remark: Sup[} \ \mathcal{I}(\phi,\psi) \] = < c, \ \gamma > \mbox{if } P_1 \ \gamma = u \ and \ P_2 \ \gamma = v \\ & \phi \ \in \ IR^m \\ & \psi \ \in \ IR^n \end{array} \\ = +\infty \ otherwise \end{array}$

 $\begin{array}{ll} \text{Consider now: Inf} \left[\begin{array}{c} \text{Sup} \left[\begin{array}{c} \mathcal{I}(\phi,\psi) \end{array} \right] \right] = \text{Inf} \left[\begin{array}{c} < c, \ \gamma > \end{array} \right] & (\text{DMK}) \\ \gamma \geq 0 & \phi \in \mathrm{IR}^m & \gamma \geq 0 \\ \psi \in \mathrm{IR}^n & P_1 \ \gamma = u \\ P_2 \ \gamma = v \end{array} \end{array}$

Part. 2 Optimal Transport – Duality(DMK):
Min <C, $\gamma >$
S.t. $\begin{cases} P_1 \ \gamma = u \\ P_2 \ \gamma = v \\ \gamma \ge 0 \end{cases}$ Inf $\begin{bmatrix} Sup[< C, \gamma > - < \phi, P_1 \ \gamma - u > - < \psi, P_2 \ \gamma - v >] \end{bmatrix}$ $\gamma \ge 0 \quad \phi \in IR^m \\ \psi \in IR^n \end{cases}$

Ínría

$$\begin{array}{ll} \mbox{(DMK):} & \mbox{(DMK):} & \mbox{Min } < c, \ensuremath{\gamma} > & \mbox{Min } < c, \ensuremath{\gamma} > & \mbox{s.t.} & \left[\begin{array}{c} P_1 \ensuremath{\gamma} = u \\ P_2 \ensuremath{\gamma} = v \\ \gamma \ge 0 \end{array} \right] \\ & \gamma \ge 0 & \mbox{v} \in IR^m \\ & \psi \in IR^n & \mbox{Exchange Inf Sup} \end{array} \\ \begin{array}{ll} \mbox{Sup[Inf[< c, \ensuremath{\gamma} > - < \phi, \ensuremath{P_1 \ensuremath{\gamma} - u > - < \psi, \ensuremath{P_2 \ensuremath{\gamma} - v > }] \end{array} \right] \\ & \phi \in IR^m \\ & \psi \in IR^n & \mbox{Exchange Inf Sup} \end{array} \end{array}$$

Ínría_

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma>
S.t.
$$\begin{cases} P_1 \ \gamma = u \\ P_2 \ \gamma = v \\ \gamma \ge 0 \end{cases}$$

$$Sup[Inf[< \gamma, C-P_1^t \phi - P_2^t \psi > + <\phi, u > + <\psi, v >]]$$

 $\psi \in IR^n$

Interpret

$$\begin{split} & \text{Sup} \Big[<\!\!\phi,\!\!u\!\!> + <\!\!\psi,\,v\!\!> \Big] \qquad \text{(DDMK)} \\ & \phi \in \mathrm{IR}^m \\ & \psi \in \mathrm{IR}^n \\ & \mathsf{P}_1{}^t \phi + \mathsf{P}_2{}^t \psi \leq \mathsf{C} \end{split}$$

Part. 2 Optimal Transport – Duality(DMK):
Min \gamma >
$$\left[\begin{array}{c} P_{1} \gamma = u \\ P_{2} \gamma = v \\ \gamma \ge 0 \end{array} \right]$$
Sup[Inf[< γ , c-P₁t φ – P₂t ψ > + < φ , u> + < ψ , v>] $\psi \in IR^{n}$
 $\psi \in IR^{n}$
 $\psi \in IR^{n}$
 $P_{1}t \varphi + P_{2}t \psi \le c$ Sup[< φ , u> + < ψ , v>](DDMK)
 $\varphi_{i} + \psi_{j} \le c_{ij} \forall (i,j)$

Part. 2 Optimal Transport – Kantorovich dual

Kantorovich's problem:

Find a measure γ defined on X x Y such that $\int_{X \text{ in } X} d\gamma(x,y) = d\mu(x)$ and $\int_{Y \text{ in } Y} d\gamma(x,y) = dv(x)$ that minimizes $\iint_{X \times Y} ||x - y||^2 d\gamma(x,y)$

Dual formulation of Kantorovich's problem (Continuous):

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi d\mu + \int_Y \psi dv$

Part. 2 Optimal Transport – c-conjugate functions

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

Innia

Part. 2 Optimal Transport – c-conjugate functions

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

If we got two functions ϕ and ψ that satisfy the constraint

Then it is possible to obtain a better solution by replacing ψ with φ^c defined by: For all y, $\varphi^c(y) = \inf_{x \text{ in } X} \frac{1}{2} ||x - y||^2 - \varphi(y)$

- ϕ^c is called the **c-conjugate** function of ϕ
- If there is a function φ such that $\psi = \varphi^c$ then ψ is said to be **c-concave**
- If ψ is c-concave, then $\psi^{cc} = \psi$

Part. 2 Optimal Transport – c-conjugate functions

Dual formulation of Kantorovich's problem:

Find two functions φ in L¹(μ) and ψ in L¹(v) Such that for all x,y, $\varphi(x) + \psi(y) \le \frac{1}{2} ||x - y||^2$ that maximize $\int_X \varphi(x) d\mu + \int_Y \psi(y) dv$

If we got two functions ϕ and ψ that satisfy the constraint

Then it is possible to obtain a better solution by replacing ψ with φ^c defined by: For all y, $\varphi^c(y) = \inf_{x \text{ in } X} \frac{1}{2} ||x - y||^2 - \varphi(y)$

- ϕ^c is called the **c-conjugate** function of ϕ
- If there is a function φ such that $\psi = \varphi^c$ then ψ is said to be **c-concave**
- If ψ is c-concave, then $\psi^{cc} = \psi$

This corresponds to the Legendre-Fenchel transform (relates Lagrangian with Hamiltonian, relates Entropy with Entalpy ...)

Semi-Discrete Optimal Transport

Part. 3 Optimal Transport – how to program ?

https://github.com/BrunoLevy/GraphiteThree/wiki/Transport

Source code Windows/Mac/Linux Windows binaries Tutorials

Part. 3 Optimal Transport – how to program ? (X;µ) (Y;v)

Continuous

Part. 3 Optimal Transport – how to program ? (X;µ) (Y;v)

Continuous

Semi-discrete

Part. 3 Optimal Transport – how to program ? (X;µ) (Y;v)

Continuous

Semi-discrete

Part. 3 Optimal Transport – semi-discrete (X;µ) (Y;v)

(DMK)
$$\sup_{\psi \in \psi^{c}} \int_{X} \psi^{c}(x) d\mu + \int_{Y} \psi(y) dv$$

Part. 3 Optimal Transport – semi-discrete (X;µ) (Y;v)

Part. 3 Optimal Transport – semi-discrete

Part. 3 Optimal Transport – semi-discrete

$$\begin{array}{ll} \text{(DMK)} & \underset{\psi \in \psi^c}{\overset{\text{Sup}}{\overset{\text{Sup}}{\overset{\text{V}^c}{\overset{\text{W}^c}{(x)d\mu}}}} \int_X \psi^c(x)d\mu + \int_Y \psi(y)d\nu \\ \\ \int_X \inf_{y_j \in Y} \left[\parallel x - y_j \parallel^2 - \psi(y_j) \right] d\mu & \sum_j \psi(y_j) \ v_j \end{array}$$

(DMK) Sup

$$\psi \in \psi^{c}$$
 $G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$

Where: Lag $\psi(yj) = \left\{ \begin{array}{cc} x & | & || & x - y_j \ ||^2 - \psi(y_j) & < || & x - y_j \ ||^2 - \psi(y_{j'}) \end{array} \right\}$ for all $j' \neq j$

(DMK) Sup
$$\psi \in \psi^{c}$$
 $G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$

Where: Lag
$$\psi(yj) = \{ x \mid ||x - y_j||^2 - \psi(y_j) < ||x - y_j||^2 - \psi(y_{j'}) \}$$
 for all j' $\neq j$

Laguerre diagram of the y_j 's (with the L₂ cost || x - y ||² used here, Power diagram)

DMK) Sup

$$\psi \in \psi^{c}$$
 $G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$
Where: Lag $\psi(yj) = \{ x | ||x - y_{j}||^{2} - \psi(y_{j}) < ||x - y_{j}||^{2} - \psi(y_{j'}) \}$ for all $j' \neq j$
Laguerre diagram of the y_{j} 's
(with the L₂ cost || $x - y$ ||² used here, Power diagram)

(DMK)
$$\sup_{\psi \in \psi^{c}} G(\psi) = \sum_{j} \int_{\text{Lag } \psi(yj)} ||x - y_{j}||^{2} - \psi(y_{j}) d\mu + \sum_{j} \psi(y_{j}) v_{j}$$
Where:
$$\text{Lag } \psi(yj) = \left\{ x \mid ||x - y_{j}||^{2} - \psi(y_{j}) < ||x - y_{j}||^{2} - \psi(y_{j'}) \right\} \text{ for all } j' \neq j$$

$$\text{Laguerre diagram of the } y_{j}'s$$
(with the L₂ cost || x - y ||² used here, Power diagram)

 $\psi \,$ is determined by the weight vector $[\psi(y_1) \, \psi(y_2) \, \ldots \, \psi(y_m)]$

(1):
$$\psi \leftarrow [0 \dots 0]$$

(2): Loop
(3): Compute the Laguerre diagram $(V_i^{\psi})_{i=1}^N$
(4): Compute the gradient $\nabla K(\psi)$
(5): If $\|\nabla K(\psi)\|_{\infty} < \epsilon$ then Exit loop
(6): Compute the Hessian matrix $\nabla^2 K(\psi)$
(7): Solve for $\mathbf{p} \in \mathbb{R}^n$ in $\nabla^2 K(\psi)\mathbf{p} = -\nabla K(\psi)$
(8): Find the descent parameter α
(9): $\psi \leftarrow \psi + \alpha \mathbf{p}$
(10): End loop

[Kitagawa Merigot Thibert 2019, JEMS] [L 2015, M2AN] [L 2021, JCP] [Nikhaktar, Seth, L, Mohayaee 2022, PRL] [von Hausseger, L, Mohayaee 2021, PRL] [L, Ray, Merigot, Leclerc, JCP (pend. rev.)]

Algorithm 2. Kitagawa-Mérigot-Thibert descent (KMT)

input: current values of $(\psi_i)_{i=1}^N$ and Newton direction **p output:** descent parameter α determining the next iterate $\psi \leftarrow \psi + \alpha \mathbf{p}$

(1) $\alpha \leftarrow 1$

- (2) loop
- (3) **if** $\inf_i |\operatorname{Lag}_i^{\psi + \alpha \mathbf{p}}| > a_0$ **and** $\|\nabla K(\psi + \alpha \mathbf{p})\| \le (1 \alpha/2) \|\nabla K(\psi)\|$
- (4) then exit loop

$$(5) \qquad \alpha \leftarrow \alpha/2$$

- (6) Compute the Laguerre diagram $(\operatorname{Lag}_{i}^{\psi+\alpha\mathbf{p}})_{i=1}^{N}$
- (7) end loop

where
$$a_0 = \frac{1}{2} \min \left(\inf_i \left| \operatorname{Lag}_i^{\psi=0} \right|, \inf_i(\nu_i) \right)$$
.

Ínría_

Ínría

Ínría

Ínría_

Scaling-up !

1 billion haloes 60 Mega parsecs

1. Lion's share I: geometry

(1):	$\psi \leftarrow [0 \dots 0]$
(2):	Loop
(3):	Compute the Laguerre diagram $(V_i^{\psi})_{i=1}^N$
(4):	Compute the gradient $\nabla K(\psi)$
(5):	If $\ \nabla K(\psi)\ _{\infty} < \epsilon$ then Exit loop
(6):	Compute the Hessian matrix $\nabla^2 K(\psi)$
(7):	Solve for $\mathbf{p} \in \mathbb{R}^n$ in $\nabla^2 K(\psi) \mathbf{p} = -\nabla K(\psi)$
(8):	Find the descent parameter α
(9):	$\psi \leftarrow \psi + \alpha \mathbf{p}$
(10):	End loop

Voronoi cells as iterative convex clipping

"Meshless Voronoi diagrams"

Voronoi cells as iterative convex clipping Neighbors in increasing distance from **x**_i

Voronoi cells as iterative convex clipping Half-space clipping

Ínría_

Voronoi cells as iterative convex clipping Half-space clipping

Voronoi cells as iterative convex clipping Half-space clipping

Voronoi cells as iterative convex clipping Half-space clipping

Ínría

[Bonneel & L], [Ray, Sokolov, Lefebvre & L]

[Bonneel & L], [Ray, Sokolov, Lefebvre & L]

Part. 4 Scaling-up – Parallel Voronoi Diagram

Algorithm 4. By-region parallel Voronoi Diagram

Input: the regions $\{R_k\}_{k=1}^M$ and the pointsets $\{\mathbf{X}_k\}_{k=1}^M$ **Output:** M graphs \mathcal{E}_k , such that $\mathcal{V}or_i = \mathcal{V}_i^{\mathcal{E}_k} \forall i$ such that $\mathbf{x}_i \in R_k$

(1) for
$$k = 1 ... M$$
, $\mathcal{E}_k \leftarrow \mathcal{D}el(\mathbf{X}_k)$
(2) for $k = 1 ... M$, $\mathbf{Y}_k \leftarrow \left\{ \mathbf{x}_i \in R_l \mid l \neq k \text{ and } \mathcal{V}_i^{\mathcal{E}_l} \cap R_k \neq \emptyset \right\}$
(3) for $k = 1 ... M$, $\mathcal{E}_k \leftarrow \mathcal{D}el(\mathbf{X}_k \cup \mathbf{Y}_k)$
(4) for $k = 1 ... M$, $\mathbf{Z}_k \leftarrow \{\mathbf{x}_j \mid \exists l \neq k, \exists (i \rightarrow j) \in \mathcal{E}_l, \mathbf{x}_i \in \mathbf{X}_k, \mathbf{x}_j \in \mathbf{X}_l\}$
(5) for $k = 1 ... M$, $\mathcal{E}_k \leftarrow \mathcal{D}el(\mathbf{X}_k \cup \mathbf{Y}_k \cup \mathbf{Z}_k)$

Part. 4 Scaling-up

2. Lion's share II: linsolve

(1)	
(1):	$\psi \leftarrow [0 \dots 0]$
(2):	Loop
(3):	Compute the Laguerre diagram $(V_i^{\psi})_{i=1}^N$
(4):	Compute the gradient $\nabla K(\psi)$
(5):	If $\ \nabla K(\psi)\ _{\infty} < \epsilon$ then Exit loop
(6):	Compute the Hessian matrix $\nabla^2 K(\psi)$
(7):	Solve for $\mathbf{p} \in \mathbb{R}^n$ in $\nabla^2 K(\psi) \mathbf{p} = -\nabla K(\psi)$
(8):	Find the descent parameter α
(9):	$\psi \leftarrow \psi + \alpha \mathbf{p}$
(10):	End loop

 $\begin{array}{ll} \textbf{input:} & \text{a pointset } (\mathbf{x}_i)_{i=1}^N \text{ and masses } (\nu_i)_{i=1}^N \\ \textbf{output:} & \text{the Laguerre diagram } \{ \mathrm{Lag}_i^{\psi} \}_{i=1}^N \text{ such that } |\mathrm{Lag}_i^{\psi}| = \nu_i \; \forall i \end{array}$

(1)

(2)(3)

(4)

(5)

Inría

 $\begin{array}{ll} \textbf{input:} & \text{a pointset } (\mathbf{x}_i)_{i=1}^N \text{ and masses } (\nu_i)_{i=1}^N \\ \textbf{output:} & \text{the Laguerre diagram } \{ \mathrm{Lag}_i^{\psi} \}_{i=1}^N \text{ such that } |\mathrm{Lag}_i^{\psi}| = \nu_i \; \forall i \end{array}$

solve for \mathbf{p} in $[\nabla^2 K(\psi)]\mathbf{p} = -\nabla K(\psi)$

Matrix of the system: the classical P1 Laplacian

$$\frac{\partial^2 K}{\partial \psi_i \partial \psi_j}(\psi) = \frac{1}{2} \frac{1}{\|\mathbf{x}_j - \mathbf{x}_j\|} \int_{\operatorname{Lag}_{i,j}^{\psi}} \mu(x) d\operatorname{vol}^{d-1}(x) \quad \text{if } j \neq i$$
$$\frac{\partial^2 K}{\partial \psi_i^2}(\psi) = -\sum_{j \neq i} \frac{\partial^2 K}{\partial \psi_i \partial \psi_j}(\psi)$$

 $\begin{array}{ll} \textbf{input:} & \textbf{a pointset} \ (\mathbf{x}_i)_{i=1}^N \ \textbf{and} \ \textbf{masses} \ (\nu_i)_{i=1}^N \\ \textbf{output:} & \textbf{the Laguerre diagram} \ \{\text{Lag}_i^\psi\}_{i=1}^N \text{such that} \ |\text{Lag}_i^\psi| = \nu_i \ \forall i \end{array}$

solve for \mathbf{p} in $[\nabla^2 K(\psi)]\mathbf{p} = -\nabla K(\psi)$

Matrix of the system: the classical P1 Laplacian

$$\frac{\partial^2 K}{\partial \psi_i \partial \psi_j}(\psi) = \frac{1}{2} \frac{1}{\|\mathbf{x}_j - \mathbf{x}_j\|} \int_{\operatorname{Lag}_{i,j}^{\psi}} \mu(x) d\operatorname{vol}^{d-1}(x) \quad \text{if } j \neq i$$

$$\frac{\partial^2 K}{\partial \psi_i^2}(\psi) = -\sum_{j \neq i} \frac{\partial^2 K}{\partial \psi_i \partial \psi_j}(\psi)$$

In 3D: 16 NNZs per row in average N = 100 million points Matrix: 25.6 GBytes

On the testbench scaling up !!

130 M haloes ... we need to upgrade !!!

- Hardware side: 4x Nvidia A100 👙 Grid'5000
- Algorithmic side: algebraic multigrid preconditioner
- Sofware side: AMGCL [Demidov] + custom backend for multi-GPU (OpenNL/geogram), Object-oriented C
 - BLAS abstraction layer
 - Sparse Matrix abstraction layer
 - Matrix assembly helper

O A https://github.com/BrunoLevy/geogram geogram License BSD 3-Clause 💭 Release passing 💭 Emscripten passing 💭 Doxygen passing

60 Mpc/h 34 M haloes

https://github.com/BrunoLevy/geogram

Unified memory can do the work for you ...

On the testbench ...

Unified memory can do the work for you ...

... but it is (in general) faster to transfer memory explicitly

Ínría

On the testbench ...

=[Compute Timings o-[OTM]	s / stats]= Total time Laguerre Linear solve Eval gradient Eval Hessian Misc	: 100.0% : 36.7% : 42.44% : 2.65% : 15.21% : 3.61%	: 7588.3s : 2737.42s : 3220.5s : 201.387s : 1154.67s : 274.321s	(2:6:28) (0:45:37) (0:53:40) (0:3:21) (0:19:14) (0:4:34)
=[Save result]=				
o-[I0] o-[SAVE]	Saving file we Elapsed time:	ights.bin64 19.68 s		
=[Program Timings	s / stats]=			
o-[WarpDrive]	Total time Compute IO	: 100.0% : 99.68% : 0.31%	: 7638.27s : 7614.33s : 23.939s	(2:7:18) (2:6:54)
CPU	Max used RAM Finished to re	: 190.363 Gb construct the	e early state	of the universe !!

On the testbench ...

=[Compute Timing	s / stats]=			
o-[OTM]	Total time	: 100.0%	: 5907.69s	(01:38:27)
	Laguerre	: 46.9%	: 2723.24s	<u>(00:45:23</u>)
	Linear solve	: 26.36%	: 1557.35s	(00:25:57)
	Eval gradient	: 3.38%	: 199.94s	(00:03:19)
	Eval Hessian	: 19.41%	: 1147.18s	(00:19:07)
	Misc	: 4.73%	: 279.98s	(00:04:39)
=[Save result]=				
o-[I0]	Saving file we	eights.bin64		
o-[SAVE]	Elapsed: 20.34	13s		
=[Program Timing	s / stats]=			
o-[WarpDrive]	Total time	: 100.0%	: 5956.66s	(01:39:16)
	Compute	: 99.60%	: 5933.37s	(01:38:53)
	I 0	: 0.39%	: 23.288s	
GPU A100 x4	Max used RAM	: 250.334 Gb	(includes map	oped GPU memory)
	Finished to re	econstruct the	e early state	of the universe !!

linear solve takes 25 min (instead of 53 min on CPU, multithreaded)

Inría

Part. 4 Scaling-up

3. Matrix assembly

(1):	$\psi \leftarrow [0 \dots 0]$
(2):	Loop
(3):	Compute the Laguerre diagram $(V_i^{\psi})_{i=1}^N$
(4):	Compute the gradient $\nabla K(\psi)$
(5):	If $\ \nabla K(\psi)\ _{\infty} < \epsilon$ then Exit loop
(6):	Compute the Hessian matrix $\nabla^2 K(\psi)$
(7):	Solve for $\mathbf{p} \in \mathbb{R}^n$ in $\nabla^2 K(\psi) \mathbf{p} = -\nabla K(\psi)$
(8):	Find the descent parameter α
(9):	$\psi \leftarrow \psi + \alpha \mathbf{p}$
(10):	End loop

Part. 4 Scaling-up

Coming next: construction of preconditioner on GPU too. Laguerre diagram on GPU ?

possible but harder... [Ray, Basselin, Alonso, Sokolov, L, Lefebvre]

Algorithm 1: Overview

Input: float4 seeds[#seeds]; // seeds: coordinates and weights **Input:** TriangleMesh $\partial \Omega$; // boundary domain Input: int K, P, V; // initial algorithm settings **Output:** float4 result[#seeds]; // integrals (volume, *barycenter, weighted Laplacian etc.*) 1 $dg \leftarrow domain_grid(\partial \Omega); // \S 4$ 2 $sg \leftarrow seed_grid(seeds); // §2.1$ $3 to_process \leftarrow \{1, ..., #seeds\};$ **4 while** *to_process* $\neq \emptyset$ **do** int $s \leftarrow batchsize(K)$; 5 failed $\leftarrow \emptyset$; 6 **for** *batch* \in *split*(*to_process*, *s*) **do** 7 int $knn[s][k] \leftarrow get_knn(sg, batch); // §2.1$ 8 result.update(dg, batch, knn, failed); // §2.2, §4 9 $(K, P, V) \leftarrow 1.5(K, P, V);$ 10 $to_process \leftarrow failed;$ 11

12 sg.permute(result); // Cancel the re-ordering done in §2.1

Red-shift distortion

(nría_

Joseph von Franhofer 1814

Joseph von Franhofer 1814

The sun

A distant star

The sun

A distant star

The sun

$$\begin{cases} \partial_{\tau} \mathbf{v} + (\mathbf{v} \cdot \nabla_{x}) \mathbf{v} = -\frac{3}{2\tau} (\nabla_{x} \phi + \mathbf{v}) \\ \partial_{\tau} \rho + \nabla_{x} \cdot (\rho \mathbf{v}) = 0 \\ \Delta \phi = 4\pi \mathcal{G} \frac{\rho - 1}{\tau} \end{cases}$$

 $\mathbf{s}_i = \mathbf{x}_i + \beta (\mathbf{v}_i \cdot \hat{\mathbf{x}}_i) \hat{\mathbf{x}}_i$ Where we think the galaxy is (taking into account only the expansion of the Universe)

Inría

Universe)

Innía

Universe)

Innía

Innía

S (redshift space)

X (actual position)

 $\mathbf{s}_i = \mathbf{x}_i + \beta (\mathbf{v}_i \cdot \hat{\mathbf{x}}_i) \hat{\mathbf{x}}_i$

Ínría

$$\hat{\mathbf{S}}(\mathbf{X}) = \mathbf{S}\big(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \boldsymbol{\Psi}^*(\mathbf{X}))\big) = \mathbf{S}_{\text{catalog}}$$

(1)
$$\mathbf{X}^{(0)} \leftarrow \mathbf{S}_{\text{catalog}}$$

(2) $\mathbf{while} \| \hat{\mathbf{S}}(\mathbf{X}^{(k)}) - \mathbf{S}_{\text{catalog}} \| > \epsilon$
(3) solve for $\delta \mathbf{X}^{(k)}$ in $(d_{\mathbf{X}} \hat{\mathbf{S}}) \ \delta \mathbf{X}^{(k)} = \mathbf{S}_{\text{catalog}} - \hat{\mathbf{S}}(\mathbf{X}^{(k)})$
(4) $\mathbf{X}^{(k+1)} \leftarrow \mathbf{X}^{(k)} + \delta \mathbf{X}^{(k)}$
(5) $k \leftarrow k+1$
(6) $\mathbf{end}//while$ Newton-Raphson

Inría

$$\hat{\mathbf{S}}(\mathbf{X}) = \mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \boldsymbol{\Psi}^*(\mathbf{X}))) = \mathbf{S}_{\text{catalog}}$$

(1)
$$\mathbf{X}^{(0)} \leftarrow \mathbf{S}_{catalog}$$

(2) $\mathbf{while} \| \hat{\mathbf{S}}(\mathbf{X}^{(k)}) - \mathbf{S}_{catalog} \| > \epsilon$
(3) solve for $\delta \mathbf{X}^{(k)}$ in $(d_{\mathbf{X}}\hat{\mathbf{S}}) \delta \mathbf{X}^{(k)} = \mathbf{S}_{catalog} - \hat{\mathbf{S}}(\mathbf{X}^{(k)})$
(4) $\mathbf{X}^{(k+1)} \leftarrow \mathbf{X}^{(k)} + \delta \mathbf{X}^{(k)}$
(5) $k \leftarrow k+1$
(6) $\mathbf{end}//while$ Newton-Raphson

 $d_{\mathbf{X}}\mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \mathbf{\Psi}^*(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{Y}}\mathbf{Q} \ \partial_{\mathbf{X}}\Psi^*$

$$d_{\mathbf{X}}\mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \mathbf{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^{*}$$

state function \mathbf{F} is defined by:

$$d_{\mathbf{X}}\mathbf{S}(\mathbf{X},\mathbf{Q}(\mathbf{X},\boldsymbol{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^{*}$$

state function \mathbf{F} is defined by:

 $\mathbf{F}(\mathbf{X}, \boldsymbol{\Psi}) := \partial_{\boldsymbol{\Psi}} K(\boldsymbol{\Psi}, \mathbf{X}).$

 $d_{\mathbf{X}}\mathbf{F} = 0$

$$d_{\mathbf{X}}\mathbf{S}(\mathbf{X},\mathbf{Q}(\mathbf{X},\boldsymbol{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\boldsymbol{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^{*}$$

state function \mathbf{F} is defined by:

 $\mathbf{F}(\mathbf{X}, \boldsymbol{\Psi}) := \partial_{\boldsymbol{\Psi}} K(\boldsymbol{\Psi}, \mathbf{X}).$

 $d_{\mathbf{X}}\mathbf{F} = 0 = \partial_{\mathbf{X}}\mathbf{F} + \partial_{\boldsymbol{\Psi}}\mathbf{F} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^*$

 $\mathrm{or:}\ \partial_{\Psi} F \partial_{\mathbf{X}} \Psi^* \quad = \quad -\partial_{\mathbf{X}} F$

$$d_{\mathbf{X}}\mathbf{S}(\mathbf{X},\mathbf{Q}(\mathbf{X},\boldsymbol{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\boldsymbol{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^{*}$$

state function \mathbf{F} is defined by:

 $\mathbf{F}(\mathbf{X}, \boldsymbol{\Psi}) := \partial_{\boldsymbol{\Psi}} K(\boldsymbol{\Psi}, \mathbf{X}).$

$$d_{\mathbf{X}}\mathbf{F} = 0 = \partial_{\mathbf{X}}\mathbf{F} + \partial_{\boldsymbol{\Psi}}\mathbf{F} \ \partial_{\mathbf{X}}\boldsymbol{\Psi}^*$$

 $\mathrm{or:}\ \partial_{\Psi} F \partial_{\mathbf{X}} \Psi^* \quad = \quad -\partial_{\mathbf{X}} F$

adjoint **P**, a $3N \times N$ matrix, defined as the solution of

 $\mathbf{P} \ \partial_{\mathbf{\Psi}} \mathbf{F} = -\partial_{\mathbf{Q}} \mathbf{S} \ \partial_{\mathbf{\Psi}} \mathbf{Q},$

[Dapogny, Oudet, L]

 $d_{\mathbf{X}}\mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \mathbf{\Psi}^*(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\Psi^*$

$\partial_{\mathbf{Q}} \mathbf{S} \ \partial_{\Psi} \mathbf{Q} \partial_{\mathbf{X}} \Psi^* =$

 $d_{\mathbf{X}}\mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \mathbf{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\Psi^{*}$

$$\underbrace{\partial_{\mathbf{Q}} \mathbf{S} \ \partial_{\mathbf{\Psi}} \mathbf{Q}}_{\downarrow} \partial_{\mathbf{X}} \Psi^* =$$

$$\underbrace{\partial_{\mathbf{Q}} \mathbf{S} \ \partial_{\mathbf{\Psi}} \mathbf{Q}}_{\downarrow} \partial_{\mathbf{X}} \Psi^* =$$

$$-\mathbf{P} \ \partial_{\mathbf{\Psi}} \mathbf{F} \ \partial_{\mathbf{X}} \Psi^* =$$

 $d_{\mathbf{X}}\mathbf{S}(\mathbf{X}, \mathbf{Q}(\mathbf{X}, \mathbf{\Psi}^{*}(\mathbf{X}))) = \partial_{\mathbf{X}}S + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{X}}\mathbf{Q} + \partial_{\mathbf{Q}}S \ \partial_{\mathbf{\Psi}}\mathbf{Q} \ \partial_{\mathbf{X}}\Psi^{*}$

$$\underbrace{\partial_{\mathbf{Q}} \mathbf{S} \ \partial_{\mathbf{\Psi}} \mathbf{Q}}_{\downarrow} \partial_{\mathbf{X}} \Psi^{*} = \\ \downarrow \quad \text{Adjoint equation} \\ -\mathbf{P} \underbrace{\partial_{\Psi} \mathbf{F}}_{\downarrow} \partial_{\mathbf{X}} \Psi^{*} = \\ \downarrow \quad \text{State equation} \\ \mathbf{P} \ \partial_{\mathbf{X}} \mathbf{F}$$

where:

Early numerical experiments in 2D

[Dapogny, Oudet, L]

Ínría

Early numerical experiments in 2D

[Dapogny, Oudet, L]

Ínría

6

Brenier-Monge-Ampere gravitation

1. Newton

2. Brenier-Monge-Ampère

 Φ

3. Optimal Transport

$$F = -\mathcal{G} \frac{m_1 m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2}$$
$$F = \nabla \phi$$
$$\Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho})$$

$$T = \nabla \Phi$$

$$= \nabla \Phi$$

$$= \frac{\rho}{\bar{\rho}} \inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^{2} \rho(\mathbf{r}) d\mathbf{r} \right]$$

$$= \frac{\phi}{4\pi \mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^{2}}{2} \quad \text{subject to:}$$

 $\int_{B} \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r}$ $\forall B$

6. The Path Bundle Method

5. Large Deviations Pple. 4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[\left| \mathbf{r}_i - \mathbf{q}_{\sigma(i)} \right|^2 \right]$$

1. Newton-Poisson

 $\rho(\mathbf{x},t)$

Gravity for a density field ? Eulerian coordinates

(F=ma) $\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \phi$ $\Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho})$ $\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$ (Mass conservation *continuity eqn*)

1. Newton

3. Optimal Transport

T

$$F = -\mathcal{G}\frac{m_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \begin{cases} F = \nabla\phi \\ \Delta\phi = 4\pi\mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla\phi \\ \Delta\phi = 4\pi\mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla\phi \\ \Delta\Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi\mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases} \begin{cases} \Pi f_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right] \\ \text{subject to:} \\ \int \bar{\rho} d\mathbf{q} = -\int -\rho(\mathbf{r}) d\mathbf{r} \end{cases} \end{cases}$$

 $\int_{B} \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$

6. The Path Bundle Method 5. Large Deviations Pple. 4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[\left| \mathbf{r}_i - \mathbf{q}_{\sigma(i)} \right|^2 \right]$$

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$

Ínría

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$
$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]$$

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$
$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]$$

 $\varepsilon \operatorname{trace}(A) = \operatorname{trace}(D^2 \phi)$

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$
$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]$$

$$\varepsilon \operatorname{trace}(A) = \operatorname{trace}(D^2 \phi) \\ = \Delta \phi$$

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$
$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]$$

$$\varepsilon \operatorname{trace}(A) = \operatorname{trace}(D^2 \phi) \\ = \Delta \phi$$

 $\det(1+\varepsilon A) = \det(D^2\phi + 1) = \det\left(D^2(\phi + \mathbf{r}^2/2)\right)$

nnia

Taylor expansion of the determinant of a matrix around the identity:

$$\det(1 + \varepsilon A) = 1 + \varepsilon \operatorname{tr}(A) + O(\varepsilon^2)$$
$$\varepsilon A = \left[\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right]$$

$$\varepsilon \operatorname{trace}(A) = \operatorname{trace}(D^2 \phi) \\ = \Delta \phi$$

 $\det(1 + \varepsilon A) = \det(D^2\phi + 1) = \det\left(D^2(\phi + \mathbf{r}^2/2)\right)$ $= \Delta (\phi + \mathbf{r}^2/2)$

1. Newton

2. Brenier-Monge-Ampère

3. Optimal Transport

 $T = \nabla \Phi$

$$F = -\mathcal{G}\frac{m_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \begin{cases} F = \nabla\Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases} \begin{cases} F = \nabla\Psi \\ \inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r}\right] \\ \sup_{V \in \mathcal{V}} \int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \end{cases}$$

 $\int_{B} \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$

6. The Path Bundle Method 5. Large Deviations Pple. 4. Discrete Optimal Transp.

$$\inf_{\sigma \in S_N} \left[\left| \mathbf{r}_i - \mathbf{q}_{\sigma(i)} \right| \right]$$

$$\bar{\rho}\Delta \Phi = \rho$$

ho

 $\bar{
ho}$

$$\bar{\rho}\Delta \Phi = \rho$$

0

$$\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

 ρ

 $\bar{
ho}$

 $\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$

ho

 $\bar{
ho}$

 $\inf_T \left[\int_V |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$

ho

$$\rho$$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^{2} \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int_{B} \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B$$

 $\bar{
ho}$

 ρ

$$\begin{split} &\inf_{T}\left[\int_{V}|\mathbf{r}-T(\mathbf{r})|^{2}\rho(\mathbf{r})d\mathbf{r}\right]\\ &\text{subject to:}\\ &\int g(\mathbf{q})\bar{\rho}d\mathbf{q}=\int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g \end{split}$$

 $\bar{
ho}$

 $\int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r}$

 $\sup_{T} \inf_{\Psi} \left[\begin{array}{c} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \right.$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

bject to:

$$g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

D

 ρ

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

 $\sup_{T} \inf_{\Psi} \left[\mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$

 ρ

Lagrange multiplier associated with the constraint

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

$$\begin{split} \sup_{T} \inf_{\Psi} \left[\begin{array}{c} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ & \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} \ - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{array} \right] \end{split}$$

Optimality conditions

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

 $\sup_{T} \inf_{\Psi} \left[\begin{array}{c} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} \end{array} \right]$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

 $\sup_{T} \inf_{\Psi} \left[\mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$ $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

Ínría

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

 $\sup_{T} \inf_{\Psi} \left[\begin{array}{c} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} \end{array} \right]$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$ $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \text{ where:} \\ \Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} \left[\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q}) \right]$$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

$$\sup_{T} \inf_{\Psi} \left[\mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$ $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \text{ where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} \left[\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q}) \right]$$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

Insert into constraint:

$$\bar{
ho}\int g(\nabla\Phi(\mathbf{r}))|\mathrm{D}^{2}\Phi(\mathbf{r})|d\mathbf{r}| = \int g(\nabla\Phi(\mathbf{r}))
ho(\mathbf{r})d\mathbf{r}$$

$$\sup_{T} \inf_{\Psi} \left[\mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$

 $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \text{ where:}$$

 $\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} [\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q})]$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$

subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

$$\sup_{T} \inf_{\Psi} \left[\mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \right]$$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$

Insert into constraint:

$$ar{
ho}\int g(
abla \Phi(\mathbf{r})) |\mathrm{D}^2 \Phi(\mathbf{r})| d\mathbf{r} \;=\; \int g(
abla \Phi(\mathbf{r}))
ho(\mathbf{r}) d\mathbf{r}$$

Pointwise:

 $\bar{\rho} \det D^2 \Phi = \rho(\mathbf{r})$

 $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \text{ where:}$$

$$\Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} \left[\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q}) \right]$$

$$\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]$$
subject to:

$$\int g(\mathbf{q})\bar{\rho}d\mathbf{q} = \int g(T(\mathbf{r}))\rho(\mathbf{r})d\mathbf{r} \quad \forall g$$

$$\sup_{T} \inf_{\Psi} \left[\begin{array}{c} \mathcal{L}(T, \Psi) = \int \rho(\mathbf{r}) T(\mathbf{r}) \cdot \mathbf{r} d\mathbf{r} + \\ \int \bar{\rho} \Psi(\mathbf{q}) d\mathbf{q} - \int \Psi(T(\mathbf{r})) \rho(\mathbf{r}) d\mathbf{r} \end{array} \right]$$

Optimality conditions $\frac{\partial \mathcal{L}}{\partial T} = 0 \quad \Rightarrow \quad \mathbf{r} = \nabla \Psi(T(\mathbf{r}))$

Insert into constraint:

$$ar{
ho}\int g(
abla \Phi(\mathbf{r})) |\mathrm{D}^2 \Phi(\mathbf{r})| d\mathbf{r} \;=\; \int g(
abla \Phi(\mathbf{r}))
ho(\mathbf{r}) d\mathbf{r}$$

Pointwise:

 $\bar{
ho} \det D^2 \Phi =
ho(\mathbf{r})$

Monge-Ampère equation:

 $\frac{\partial^2 \mathcal{L}}{\partial T^2} \ge 0 \quad \Rightarrow \quad \Psi \text{ is a convex function}$

$$T(\mathbf{r}) = \nabla \Phi(\mathbf{r}), \text{ where:} \\ \Phi(\mathbf{r}) = \Psi^*(\mathbf{r}) = \inf_{\mathbf{q}} \left[\mathbf{q} \cdot \mathbf{r} - \Psi(\mathbf{q}) \right]$$

1. Newton

2. Brenier-Monge-Ampère

3. Optimal Transport

$$F = -\mathcal{G}\frac{m_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \begin{cases} F = \nabla \Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla \Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \\ \int \bar{\rho}d\mathbf{q} = \int \rho(\mathbf{r})d\mathbf{r} \quad \forall B \end{cases}$$

6. The Path Bundle Method

5. Large Deviations Pple.

4. Discrete Optimal Transp.

 $^{1}(B)$

B

 ρ

$$\begin{cases} F = \nabla \Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases}$$

Inría

ho

N points \mathbf{r}_i

 $ar{
ho}$ N points ${f q}_{i}$

$$ho$$
 T(**r**_i) = **q** _{$\sigma(i)$}

 σ : The permutation that minimizes $\left[\left|\mathbf{r}_{i}-\mathbf{q}_{\sigma(i)}
ight|^{2}
ight]$

1. Newton

2. Brenier-Monge-Ampère

3. Optimal Transport

$$F = -\mathcal{G}\frac{m_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \begin{cases} F = \nabla \phi \\ \Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla \phi \\ \Delta \phi = 4\pi \mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla \phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi \mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \end{cases} \frac{\inf_{T} \left[\int_{V} |\mathbf{r} - T(\mathbf{r})|^2 \rho(\mathbf{r}) d\mathbf{r} \right]}{\operatorname{subject to:}} \\ \int_{B} \bar{\rho} d\mathbf{q} = \int_{T^{-1}(B)} \rho(\mathbf{r}) d\mathbf{r} \quad \forall B \end{cases}$$

6. The Path Bundle Method
$$\mathbf{5. Large Deviations Pple.} \qquad \mathbf{4. Discrete Optimal Transp.} \\ \inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \inf_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf{r}_i - \mathbf{q}_{\sigma(i)}|^2 \right] \\ \lim_{\sigma \in S_N} \left[|\mathbf$$

$$F_i = \frac{1}{4\pi \mathcal{G}\bar{\rho}} (\mathbf{r}_i - \mathbf{q}_{\sigma(i)})$$

 σ : The permutation that minimizes $\left|\left|\mathbf{r}_{i}-\mathbf{q}_{\sigma(i)}\right|^{2}\right|$

Ínría

$$F_{i} = \frac{1}{4\pi \mathcal{G}\bar{\rho}} (\mathbf{r}_{i} - \mathbf{q}_{\sigma(i)})$$

 σ : The permutation that minimizes $\left[\left| \mathbf{r}_{i} - \mathbf{q}_{\sigma(i)} \right|^{2} \right]$

Why ? Can we *deduce* this formula from something else ?

Idea has similarities with *least action*

Idea has similarities with *least action*

Extremize action between *fixed* initial and final conditions.

Idea has similarities with *least action*

Extremize action between *fixed* initial and final conditions.

Deduce law of motion (differential relation)

Idea has similarities with *least action*

Extremize action between *fixed* initial and final conditions.

Deduce law of motion (differential relation)

Extrapolate it

M *indistinguishable* particles Independent Brownian motion No interaction

We suppose that we observe

Innía

We suppose that we observe them here after T seconds

What is the "most probable" motion that accounts for the observation ?

Probability of observing the particles here after T seconds:

 $\operatorname{Prob} \ \left(\mathcal{X}_i^\epsilon(T) \underset{\operatorname{perm}}{\approx} Y \right) \approx$

 $\frac{1}{M!} \sum_{\sigma \in S_M} \exp\left[\frac{-\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2\epsilon T}\right] (2\pi\epsilon T)^{-\frac{3M}{2}}$

in

Probability of observing the particles here after T seconds:

Make "temperature" ϵ tend to 0:

$$\lim_{\epsilon \to 0} \epsilon \log \operatorname{Prob} \left[\mathcal{X}_i^{\epsilon}(T) \underset{\text{perm}}{\approx} Y \right] \approx$$
$$\inf_{\sigma \in S_N} \left[\frac{\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2T} \right]$$

Innía

Trajectories become geodesics

$$\begin{split} -\lim_{\epsilon \to 0} & \epsilon \log \operatorname{Prob} \left[\mathcal{X}_i^{\epsilon}(T) \underset{\text{perm}}{\approx} Y \right] \approx \\ \inf_{\sigma \in S_N} \left[\frac{\sum_i |Y_{\sigma(i)} - X_i^0|^2}{2T} \right] \end{split}$$

5. Large Deviation Principle

1. Newton

2. Brenier-Monge-Ampère

3. Optimal Transport

$$F = -\mathcal{G}\frac{m_1m_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \begin{cases} F = \nabla\Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Delta \phi = 4\pi\mathcal{G}(\rho - \bar{\rho}) \end{cases} \begin{cases} F = \nabla\Phi \\ \Delta \Phi = \frac{\rho}{\bar{\rho}} \\ \Phi = \frac{\phi}{4\pi\mathcal{G}\bar{\rho}} + \frac{|\mathbf{r}|^2}{2} \\ \int |\mathbf{r} - T(\mathbf{r})|^2\rho(\mathbf{r})d\mathbf{r} \\ \end{bmatrix}$$

6. The Path Bundle Method

5. Large Deviations Pple. 4. Discrete Optimal Transp.

 $\mathbf{2}$

 $T^{-1}(B)$

B

inf

$$\sigma \in S_N \left[\left| \mathbf{1} i - \mathbf{q} \sigma(i) \right| \right]$$

Initial condition (homogeneous)

Ínría

Ínría

Ínría

 $\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$

Ínría

 $\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$ $F_i(\tau) = -\nabla\phi(\tau)$ $=\mathbf{r}_{i}-\nabla\Phi(\mathbf{r}_{i},\tau)$

Inría

 $\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$ $F_i(\tau) = -\nabla\phi(\tau)$ $=\mathbf{r}_{i}-\nabla\Phi(\mathbf{r}_{i},\tau)$ $=\mathbf{r}_i(\tau)-\mathbf{g}_i(\tau)$

Ínría

$$\frac{d^2 \mathbf{r}_i(\tau)}{d\tau^2} = F_i(\tau)$$
$$F_i(\tau) = -\nabla \phi(\tau)$$
$$= \mathbf{r}_i - \nabla \Phi(\mathbf{r}_i, \tau)$$
$$= \mathbf{r}_i(\tau) - \mathbf{g}_i(\tau)$$

 $\mathbf{g}_i(au)$: barycenter of

- $egin{array}{lll} \{ {f q} \; ; \; |{f q} {f r}_i|^2 \phi_i \leq \ |{f q} {f r}_j|^2 \phi_j \end{array} \end{array}$
 - $\forall 1 \leq j \leq N \}$

Ínría

Ínría

Inría

Results – Cosmological simulation

- 150 million particles
- 300 Mpc/h
- Λ-CDM initial conditions [Planck]
- Newton-Poisson and BMAG

Inría

Ínría

Inría

Inría

Ínría_

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Centrail density profile of haloes is flatter
- More power on large scales and less power on small scales

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Centrail density profile of haloes is flatter
- More power on large scales and less power on small scales Can be falsified with future observational surveys

Results – Conclusions

BMAG is a small *non-linear* modification of Newtonian dynamics

Differences:

- Larger number of filaments
- Smaller number of small haloes
- Haloes spin faster. Origin of angular momentum of disk galaxies ?
- Centrail density profile of haloes is flatter
- More power on large scales and less power on small scales Can be falsified with future observational surveys

Questions:

•BMAG as the weak field limit of another strong-field theory ?

•BMAG emerging from GR (or other modified theories of gravity) ?

•Entropic gravity ?

Innia

References on Cosmology and OT

Nature 2002, Frisch, Matarrese, Mohayaee, Sobolevski MNRAS 2003, Brenier, Frisch, Henon, Loeper, Matarrese, Mohayaee, Sobolevski Geom. & Func. Ana., 2004, Brenier Confluentes Math, 2011, Brenier Analysis & PDE, 2023, Ambrosio, Baradat and Brenier JEMS, 2019, Kitagawa, Merigot, Thibert

MNRAS 2021, L, Mohayaee, von Hausegger Physical Review Letters 2021, von Hausegger, L, Mohayaee Journal of Computational Physics 2022, L Physical Review Letters 2022, Nikhaktar, Sheth, L, Mohahayee Physical Review D, 2023, Nikhaktar, Padmanabhan, L, Sheth, Mohayaee Physical Review D, 2024, Nikhaktar, Padmanabhan, L, Sheth, Mohayaee Physical Review D, 2024, L, Brenier, Mohayaee Journal of Computational Physics, L (pending major revision) submitted, Dapogny, L, Oudet

Acknowledgements This is joint work with :

Yann Brenier **Charles Dapogny** Sebastian von Hausegger Hugo Leclerc, Quentin Merigot Roya Mohayaee Farnik Nikhaktar, Edouard Oudet, Nikhik Padmanhaban Nicolas Ray, Ravi Sheth

COSMOGRAM-Launchpad Action Exploratoire Inria