From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport

Quentin Bouniot¹ levgen Redko² Anton Mallasto³ Charlotte Laclau¹ Karol Arndt⁴ Oliver Struckmeier⁴ Markus Heinonen⁴ Ville Kyrki⁴ Samuel Kaski^{4,5}

¹Telecom Paris ²Noah's Ark Lab ³Smartly.io ⁴Aalto University ⁵University of Manchester

Motivations

Non-linearity is at the heart of DNNs

- ► Universal function approximators thanks to non-linearity.
- Mainly introduced through activation functions which are the common ingredients between architectures.

No such notion of quantifying non-linearity exists in the literature.

► Research mainly focus on quantifying expressive power of DNNs.

Goal: Measure non-linearity of activation functions from data distribution

General idea

Measure non-linearity as lack of linearity through Optimal Transport (OT)

- ► We know the closed-form solution of the OT problem for random variables (RVs) following normal distributions.
- ► For any RVs X and Y, if Y = TX with T Positive Semi-Definite (PSD) matrix, then the solution of OT problem is exactly the one of their normal approximations (N_X ~ N(µ(X), Σ(X)) and N_Y ~ N(µ(Y), Σ(Y))).
- ► We obtain an **upper bound** on the difference of the two OT problems.
- ► We can define the **affinity score** using this bound.

Affinity Score

• ρ_{aff} describes how much Y differs from being a PSD affine transformation of X.

▶
$$0 \le \rho_{\text{aff}}(X, Y) \le 1$$
, and $\rho_{\text{aff}}(X, Y) = 1 \Leftrightarrow Y = T_{\text{aff}}X$.

Bouniot, Redko, Mallasto, Laclau, Arndt, Struckmeier, Heinonen, Kyrki, Kaski

ReLU example

Affinity scores throughout the input domain of ReLU

► Affinity scores will vary depending on the input domain considered.

 $\blacktriangleright\,$ For ReLU, high $\rho_{\rm aff}$ values in the linear part of the transformation.

Non-linearity signature

Throughout DNNs Architectures

- ► Affinity scores statistics and Accuracy (in red) throughout DNNs architectures.
- ▶ Before ViTs: max and median values are increasing, also gap between min and max.
- Within ViTs: Trend of decreasing min values

Take-Home Message

From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal ${\sf Transport}^1$

- First theoretical sound tool to measure non-linearity in DNNs
- ✓ Different developments in Deep Learning can be understood through the prism of non-linearity
- ✓ Variety of potential applications

¹Quentin Bouniot et al. "From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport". In: arXiv preprint arXiv:2310.11439 (2023).

Thank you for listening !

Do not hesitate to contact us if you have questions.

[1] Quentin Bouniot et al. "From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport". In: *arXiv preprint arXiv:2310.11439* (2023).