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Motivations

Non-linearity is at the heart of DNNs

I Universal function approximators thanks to non-linearity.

I Mainly introduced through activation functions which are the common ingredients

between architectures.

No such notion of quantifying non-linearity exists in the literature.

I Research mainly focus on quantifying expressive power of DNNs.

Goal: Measure non-linearity of activation functions from data distribution
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General idea

Measure non-linearity as lack of linearity through Optimal Transport (OT)

I We know the closed-form solution of the OT problem for random variables (RVs)

following normal distributions.

I For any RVs X and Y , if Y = TX with T Positive Semi-Definite (PSD) matrix, then the
solution of OT problem is exactly the one of their normal approximations

(NX ∼ N (µ(X),Σ(X)) and NY ∼ N (µ(Y ),Σ(Y ))).

I We obtain an upper bound on the difference of the two OT problems.

I We can define the affinity score using this bound.
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Affinity Score

ρaff(X,Y) = 1− W2(TaffX,Y)√
2Tr[Σ(Y)]

I ρaff describes how much Y differs from being a PSD affine transformation ofX .

I 0 ≤ ρaff(X,Y ) ≤ 1, and ρaff(X,Y ) = 1 ⇔ Y = TaffX .

2-Wasserstein distance OT map between normal approximations

Covariance of Y
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ReLU example

Affinity scores throughout the input domain of ReLU
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I Affinity scores will vary depending on the input domain considered.

I For ReLU, high ρaff values in the linear part of the transformation.
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Non-linearity signature
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Non-linearity signature = [ (ReLU1), (ReLU2), (ReLU3), ... , (ReLUn)]
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Throughout DNNs Architectures

I Affinity scores statistics and Accuracy (in red) throughout DNNs architectures.

I Before ViTs: max and median values are increasing, also gap between min and max.

I Within ViTs: Trend of decreasing min values
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Take-Home Message

From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks

with Affine Optimal Transport1

XXX First theoretical sound tool to measure non-linearity in DNNs

XXX Different developments in Deep Learning can be understood through the prism of

non-linearity

XXX Variety of potential applications

1Quentin Bouniot et al. “From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport”. In: arXiv preprint arXiv:2310.11439

(2023).
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Thank you for listening !

Do not hesitate to contact us if you have questions.

[1] Quentin Bouniot et al. “From Alexnet to Transformers: Measuring the Non-linearity of

Deep Neural Networks with Affine Optimal Transport”. In: arXiv preprint

arXiv:2310.11439 (2023).
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