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OT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf
t

∫
c(x, t(x)) dµ1(x)

where t is a transport map and t#µ1 = µ2

1

2

Among other conditions, implies that µ1 and µ2 have the same masses (no mass creation nor
destruction)
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OT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf
γ ∈ Γ(µ1, µ2)

∫
X×Y

c(x, y) dγ(x, y)

where Γ(µ1, µ2)
def
= {γ ∈ M+(X × Y) s.t. (πx)#γ = µ1 and (πy)#γ = µ2 } with πx : X × Y → X .

Linear loss

Marginal constraints

Can be rewritten with a penalty term

OT (µ1, µ2) = inf
γ ≥ 0

∫
X×Y

c(x, y) dγ(x, y) + l{=} ((πx)#γ|µ1) + l{=} ((πy)#γ|µ2)

with l{=}(ν|µ) is 0 if ν = µ and∞ otherwise.
When the distributions are discrete µ1 =

∑n
i=1 hiδxi and µ2 =

∑m
j=1 gjδyj , it is written

OT (µ1, µ2) = min
γ ∈ Γ(µ1, µ2)

∑
i,j

Ci,jγi,j

It is the same as the problem between their associated probability weight vectors h and g, with the cost
matrix C depending on the support of µ1 and µ2:

OT C (h, g) = OT (µ1, µ2)

with Ci,j = C(xi, yj) and γ ∈ Rn×m
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1

2
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OT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses, we may want to discard
some outliers or limit the impact of the noise or we would like to reweight the distributions

In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to
identify common genes [4].

In color transfer, to account for different proportions of colors [2]
In geophysics, when averaging different models [12]
In machine learning, when some of the points are out of the distribution, for instance with WGAN [13]
In topological analysis, to extract (topological) features such as gaps, connected component

How to define outlier and noise-robust OT?
define robust variants of OT (e.g. medians of means OT, low rank constraints on the OT plan)
pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
allow for some mass variation
> destroy mass, in order to discard some outliers
> rebalance the weights, in order to account for noise

Unbalanced Optimal Transport is often used in this context
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UOT Definition

Unbalanced Optimal Transport
Definition

key idea: relax the mass conservation constraint

surrogate target distrib.∫
ρ0(x)dx =

∫
ρ̃1(y)dy

reg. parameter

ρ̃1 should be close to ρ1
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UOT Definition

Unbalanced Optimal Transport
Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

UOT (µ1, µ2) ≜ inf
γ ≥ 0

∫
Rd×Rd

c(x, y) dγ(x, y)

+ λ
(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)reg

Linear loss

Marginal constraints

with λ ≥ 0: relaxing the constraints.
When λ → ∞ we recover the balanced OT problem.

Depending on D, has often similar properties as OT (is a distance, weak convergence etc.)
Questions:

How to write the problem for discrete distributions?
Which D?
how to solve the problem?
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UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

We denote µ̂1 = (π1)#γ and µ̂2 = (π2)#γ the marginals of γ
When the distributions are discrete µ1 =

∑n
i=1 hiδxi and µ2 =

∑m
j=1 gjδyj , it is written

UOT (µ1, µ2) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)
or [8]

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)
⇒ OT between surrogate distributions µ̂1 and µ̂2 + deviation penalty

It is very often restated as

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allows creating/destroying
mass
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UOT Motivation

Unbalanced Optimal Transport
Motivation and questions

Selecting the right notion of discrepancy is the key

Diverse spectrum of formulations (e.g. Sliced Unbalanced OT [1, 6])

Does not need to assume common ground cost (Unbalanced Gromov-Wasserstein [5, 12])

Additional regularization (entropic) can also be considered
Discuss several discrepancies for the regularization

give their main features
give associated computational methods
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UOT for creating and destroying mass Partial OT

1⃝ UOT for creating and destroying mass
Partial Optimal Transport

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j

Ci,jγi,j + λ
(

∥γ1m − h∥1 + ∥γ⊤1n − g∥1
)

D is L1 penalty

is equivalent to writing
UOT C(h, g) = inf

γ ∈ Γ≤(h, g)

∑
i,j

Ci,jγi,j

where Γ≤(h,g) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤
n γ1m = s }

amount of mass to be transported
s = 0.1 s = 0.5 s = 0.9
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UOT for creating and destroying mass Partial OT

1⃝ UOT for creating and destroying mass
Partial Optimal Transport

UOT C(h, g) ≜ inf
γ∈Γ≤(h,g)

∑
i,j

Ci,jγi,j

where Γ≤(h,g) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤
n γ1m = s }

Can be solved easily by adding dummy points hn+1= ∥g∥1 − s and gm+1= ∥h∥1 − s with null cost and
solve the extended OT problem [5, 3]

s = 0.1 s = 0.5 s = 0.9

Any OT solver can be used!
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UOT for creating and destroying mass UOT with quadratic penalty

1⃝ UOT for creating and destroying mass
Unbalanced Optimal Transport with L2 penalty

UOT C(h, g) ≜ min
γ≥0

∑
i,j Ci,jγi,j + λ

(
∥γ1m − h∥22 + ∥γ⊤1n − g∥22

)
D is squared L2 penalty

is equivalent to writing, in a vectorial form:

UOT C(h, g) ≜ min
γ≥0

∥Hγv − y∥22 +
1
λ
c⊤∥γv∥1

linear regression pb weighted L1 (Lasso) regul.

where c = vec(C), γv = vec(γ), y⊤ = [h⊤, g⊤] and H is a design matrix.

We can borrow the tools from a large literature on solving those problems!
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UOT for creating and destroying mass UOT with quadratic penalty

1⃝ UOT for creating and destroying mass
Unbalanced Optimal Transport with L2 penalty
Regularization path of UOT: a LARS-like algorithm [7]

Solutions are piecewise linear with 1
λ

We can find the set of all solutions for all λ values
1. start with λ = 0
2. loop
3. increase λ until there is a change on the support of γv
4. update γv (incremental resolution of linear equations)
5. repeat until λ = ∞
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UOT with geometric information Taking into account the support

2⃝ UOT with surrogate distributions
Taking into account the support with surrogate distributions, formulation

For now, we have considered the following formulation

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation
What if we also take into account the support of the samples?

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)

Which D?
> MMD [11]
> OT [9]

The price is that it involves optimization over all possible joint measures
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UOT with geometric information Taking into account the support

2⃝ UOT with surrogate distributions
UOT with OT penalty

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT [10]

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(

OT (µ̂1, µ1) +OT (µ̂2, µ2)
)

⇒ do not allow some mass variation, rather rebalance the mass as the mass of µ̂i should be equal to µi
µ̂1 and µ̂2 provide compressed representation of µ1 and µ2

Can be solved with any convex solver (e.g. CVXPY), is a distance
Exact OT

Source samples
Target samples

Partial OT UOT with KL penalty UOT with OT penalty

Outliers: points with small mass on the rebalanced distribution µ̂1 and µ̂2
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Conclusion

Unbalanced Optimal Transport
Conclusion and pen challenges

Conclusion
UOT is mandatory for many applications
(many) efficient solvers exist
implementation in POT python toolbox 1

Some open challenges
outlier removal?
which statistical guarantees?

1many figures have been generated with POT https://pythonot.github.io/
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