Unbalanced optimal transport: formulation and efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

GDR IASIS, Feb. 2025

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass

Partial OT UOT with L₂ penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

от

Conclusion and some challenges

Bibliography

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{t}} \int c(\boldsymbol{x},\boldsymbol{t}(\boldsymbol{x})) d\mu_1(\boldsymbol{x})$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{t} \int c(x,t(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_t \int c(x,t(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

Defines for each particle located at x what is its destination t(x)

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_t \int c(x,t(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

Defines for each particle located at x what is its destination t(x)

Among other conditions, implies that μ_1 and μ_2 have the same masses (no mass creation nor destruction)

Optimal transport

Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$

Marginal constraints

Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

1.1

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$

Marginal constraints

with $(\pi_x)_{\#} \gamma = \mu_1$

and $(\pi_y)_{\#} \boldsymbol{\gamma} = \mu_2$

The **transport plan** $\gamma(x, y)$ specifies for each pair (x, y) how many particles go from x to y Still implies that μ_1 and μ_2 have the same masses

OT Kantorovich formulation

Optimal transport Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$ with $\pi_x : X \times Y \to X$. Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with $l_{\{=\}}(
u|\mu)$ is 0 if $u = \mu$ and ∞ otherwise.

OT Kantorovich formulation

Optimal transport Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$ with $\pi_x : X \times Y \to X$. Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with $l_{\{=\}}(\nu|\mu)$ is 0 if $\nu = \mu$ and ∞ otherwise.

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{OT}(\mu_1,\mu_2) = \min_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \sum_{i,j} C_{i,j}\gamma_{i,j}$$

It is the same as the problem between their associated probability weight vectors **h** and **g**, with the cost matrix **C** depending on the support of μ_1 and μ_2 :

$$\mathcal{OT}$$
 c (h, g) = $\mathcal{OT}(\mu_1, \mu_2)$

with $C_{i,j} = C(x_i, y_j)$ and $\gamma \in \mathbb{R}^{n \times m}$

- But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions
 - In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].

Balanced Optimal transport in action

- But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions
 - In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].
 - In color transfer, to account for different proportions of colors [2]

(c) Full histogram matching

(d) Partial histogram matching

- But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions
 - In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].
 - In color transfer, to account for different proportions of colors [2]
 - In geophysics, when averaging different models [12]

- But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions
 - In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].
 - In color transfer, to account for different proportions of colors [2]
 - In geophysics, when averaging different models [12]
 - In machine learning, when some of the points are out of the distribution, for instance with WGAN [13]

- But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions
 - In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].
 - In color transfer, to account for different proportions of colors [2]
 - In geophysics, when averaging different models [12]
 - In machine learning, when some of the points are out of the distribution, for instance with WGAN [13]
 - In topological analysis, to extract (topological) features such as gaps, connected component

Optimal transport Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses, we may want to discard some outliers or limit the impact of the noise or we would like to reweight the distributions

- In biology, there are different cell proliferation or death in different sub-populations [14] or we may want to identify common genes [4].
- In color transfer, to account for different proportions of colors [2]
- In geophysics, when averaging different models [12]
- In machine learning, when some of the points are out of the distribution, for instance with WGAN [13]
- In topological analysis, to extract (topological) features such as gaps, connected component
- How to define outlier and noise-robust OT?
 - define robust variants of OT (e.g. medians of means OT, low rank constraints on the OT plan)
 - pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
 - allow for some mass variation
 - > destroy mass, in order to discard some outliers
 - > rebalance the weights, in order to account for noise
 - Unbalanced Optimal Transport is often used in this context

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass

Partial OT UOT with L₂ penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

UOT

Conclusion and some challenges

Bibliography

Unbalanced Optimal Transport Definition

key idea: relax the mass conservation constraint

NUMERICAL RESOLUTION OF AN "UNBALANCED" MASS TRANSPORT PROBLEM

JEAN-DAVID BENAMOU¹

Abstract. We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this "unbalanced" problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Mathematics Subject Classification. 35J60, 65K10, 78A05, 90B99.

Received: April 1st, 2003.

reg. parameter

2.4. The mixed distance

In this paper we propose to work on unbalanced data by considering the mixed Wasserstein/ L^2 -distance in the following sense: given two possibly unbalanced densities ρ_0 and ρ_1 , find $\tilde{\rho}_1$ – the closest density to ρ_1 in the L^2 -sense – which minimizes the Wasserstein distance $d_{\text{wass}}(\rho_0, \tilde{\rho}_1)$. It can be formulated as

L. Chapel • UOT: formulation and computational solutions • GDR IASIS, Feb. 2025

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \ge 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{reg \\ + \lambda}} \underbrace{c(x,y)}_{p(\pi^1) \# \gamma | \mu_1) + D((\pi^2)_{\#} \gamma | \mu_2)}$$
Marginal constraints

with $\lambda \ge 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem.

Unbalanced Optimal Transport Definition

Regularizing the **balanced** optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$

Marginal constraints

with $\lambda \ge 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem. When the overall masses are different

Unbalanced Optimal Transport Definition

Regularizing the **balanced** optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$

Marginal constraints

with $\lambda \ge 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem. When there are some outliers

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\gamma \geq 0} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \underbrace{c(x,y)}_{reg} d\gamma(x,y) d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right) d\gamma(x,y)$$
Marginal constraints

with $\lambda \geq 0$: relaxing the constraints.

When $\lambda \to \infty$ we recover the balanced OT problem.

Depending on *D*, has often similar properties as OT (is a distance, weak convergence etc.)

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\gamma \ge 0} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{f \in \mathcal{I} \\ f \neq 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{f \neq 0} d\gamma(x,y) d\gamma(x,y) d\gamma(x,y)$$

$$\underbrace{\mathcal{I}(\pi^1)_{\#}\gamma|\mu_1}_{f \neq 0} + \mathcal{I}(\pi^2)_{\#}\gamma|\mu_2)$$
Marginal constraints

with $\lambda \geq 0$: relaxing the constraints.

When $\lambda \to \infty$ we recover the balanced OT problem.

- Depending on *D*, has often similar properties as OT (is a distance, weak convergence etc.)
- Questions:
 - How to write the problem for discrete distributions?
 - Which D?
 - how to solve the problem?

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2)}{D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2)} \right)$$

or [8]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

 \Rightarrow **OT between surrogate distributions** $\hat{\mu}_1$ and $\hat{\mu}_2$ + deviation penalty

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or [8]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

 \Rightarrow **OT between surrogate distributions** $\hat{\mu}_1$ and $\hat{\mu}_2$ + deviation penalty

L. Chapel • UOT: formulation and computational solutions • GDR IASIS, Feb. 2025

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or [8]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

 \Rightarrow **OT between surrogate distributions** $\hat{\mu}_1$ and $\hat{\mu}_2$ + deviation penalty

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or [8]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

 \Rightarrow **OT between surrogate distributions** $\hat{\mu}_1$ and $\hat{\mu}_2$ + deviation penalty

It is very often restated as

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allows creating/destroying mass

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} \mathsf{C}_{i,j}\gamma_{i,j} + \lambda \left(\frac{\mathsf{D}((\pi^1)_{\#}\boldsymbol{\gamma}|\mu_1) + \mathsf{D}((\pi^2)_{\#}\boldsymbol{\gamma}|\mu_2)}{\mathsf{D}(\pi^2)_{\#}\boldsymbol{\gamma}|\mu_2} \right)$$

or [8]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

 \Rightarrow **OT between surrogate distributions** $\hat{\mu}_1$ and $\hat{\mu}_2$ + deviation penalty (2)

It is very often restated as

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq \mathbf{0}} \sum_{i,j} \zeta_{i,j} \gamma_{i,j} + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g}$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allows creating/destroying mass (1)

Unbalanced Optimal Transport Motivation and questions

- Selecting the right notion of discrepancy is the key
- Diverse spectrum of formulations (e.g. Sliced Unbalanced OT [1, 6])
- Does not need to assume common ground cost (Unbalanced Gromov-Wasserstein [5, 12])
- Additional regularization (entropic) can also be considered
- Discuss several discrepancies for the regularization
 - give their main features
 - give associated computational methods

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass Partial OT

UOT with L₂ penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

Conclusion and some challenges

Bibliography

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j}\gamma_{i,j} + \lambda \left(\frac{\|\boldsymbol{\gamma}\mathbb{1}_m - \mathsf{h}\|_1 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathsf{g}\|_1}{D \text{ is } L_1 \text{ penalty}} \right)$$

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\substack{\boldsymbol{\gamma} \geq 0}} \sum_{i,j} C_{i,j}\gamma_{i,j} + \lambda \left(\|\boldsymbol{\gamma}\mathbb{1}_m - \mathsf{h}\|_1 + \|\boldsymbol{\gamma}^{\top}\mathbb{1}_n - \mathsf{g}\|_1 \right)$$

$$\underline{D \text{ is } L_1 \text{ penalty}}$$

is equivalent to writing

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \inf_{\substack{\boldsymbol{\gamma} \in \Gamma_{\leq}(\mathsf{h},\mathsf{g})}} \sum_{i,j} C_{i,j} \gamma_{i,j}$$

where
$$\Gamma_{\leq (\mathbf{h}, \mathbf{g})} = \{ \gamma \geq 0, \ \mathbf{\gamma} \mathbb{1}_m \leq \mathbf{h} \text{ and } \mathbf{\gamma}^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \mathbf{\gamma} \mathbb{1}_m = s \}$$

amount of mass to be transported

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j}\gamma_{i,j} + \lambda \left(\|\boldsymbol{\gamma}\mathbb{1}_m - \mathsf{h}\|_1 + \|\boldsymbol{\gamma}^{\top}\mathbb{1}_n - \mathsf{g}\|_1 \right)$$

$$\underline{D \text{ is } L_1 \text{ penalty}}$$

is equivalent to writing

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \inf_{\boldsymbol{\gamma} \in \Gamma_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} C_{i,j} \gamma_{i,j}$$

where
$$\Gamma_{\leq (\mathbf{h}, \mathbf{g})} = \{ \gamma \geq 0, \ \mathbf{\gamma} \mathbb{1}_m \leq \mathbf{h} \text{ and } \mathbf{\gamma}^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \mathbf{\gamma} \mathbb{1}_m = s \}$$

amount of mass to be transported

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma}\in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} C_{i,j}\gamma_{i,j}$$

where $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \boldsymbol{\gamma} \mathbb{1}_m \leq \mathbf{h} \text{ and } \boldsymbol{\gamma}^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \boldsymbol{\gamma} \mathbb{1}_m = s \}$

1

Can be solved easily by adding *dummy* points $h_{n+1} = ||g||_1 - s$ and $g_{m+1} = ||h||_1 - s$ with null cost and solve the extended OT problem [5, 3]

Any OT solver can be used!

(1) UOT for creating and destroying mass Unbalanced Optimal Transport with *L*₂ penalty

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\gamma \ge 0} \frac{\sum_{i,j} C_{i,j} \gamma_{i,j}}{D \text{ is squared } L_2 \text{ penalty}} + \lambda \left(\frac{\| \boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h} \|_2^2 + \| \boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g} \|_2^2}{D \text{ is squared } L_2 \text{ penalty}} \right)$$

is equivalent to writing, in a vectorial form:

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\substack{\gamma \geq 0 \\ \gamma \geq 0}} \| \mathbf{H}_{\gamma_{\mathbf{v}}} - \mathbf{y} \|_{2}^{2} + \frac{1}{\lambda} \mathbf{c}^{\top} \| \gamma_{\mathbf{v}} \|_{1}$$

linear regression pb (weighted L1 (Lasso) regul.

where $\boldsymbol{c} = \operatorname{vec}(\boldsymbol{C}), \, \boldsymbol{\gamma}_{\boldsymbol{v}} = \operatorname{vec}(\boldsymbol{\gamma}), \, \boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$ and \boldsymbol{H} is a design matrix.

(1) UOT for creating and destroying mass Unbalanced Optimal Transport with *L*₂ penalty

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \frac{\sum_{i,j} C_{i,j} \gamma_{i,j}}{D \text{ is squared } L_2 \text{ penalty}} + \lambda \left(\frac{\|\boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h}\|_2^2 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g}\|_2^2}{D \text{ is squared } L_2 \text{ penalty}} \right)$$

is equivalent to writing, in a vectorial form:

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\substack{\gamma \geq 0 \\ \gamma \geq 0}} \| \mathbf{H}_{\gamma_{\mathbf{v}}} - \mathbf{y} \|_{2}^{2} + \frac{1}{\lambda} \mathbf{c}^{\top} \| \gamma_{\mathbf{v}} \|_{1}$$

linear regression pb (weighted L1 (Lasso) regul.

where $\boldsymbol{c} = \text{vec}(\boldsymbol{C})$, $\boldsymbol{\gamma}_v = \text{vec}(\boldsymbol{\gamma})$, $\boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$ and \boldsymbol{H} is a design matrix. We can borrow the tools from a large literature on solving those problems!

(1) UOT for creating and destroying mass Unbalanced Optimal Transport with L₂ penalty

Regularization path of UOT: a LARS-like algorithm [7]

- Solutions are piecewise linear with $\frac{1}{\lambda}$
- \blacksquare We can find the set of all solutions for all λ values
 - **1**. start with $\lambda = 0$
 - 2. loop
 - 3. increase λ until there is a change on the support of γ_{v}
 - 4. update γ_v (incremental resolution of linear equations)
 - 5. repeat until $\lambda = \infty$

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass

Partial OT UOT with L_2 penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

Conclusion and some challenges

Bibliography

2 UOT with surrogate distributions

Taking into account the support with surrogate distributions, formulation

For now, we have considered the following formulation

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq \mathbf{0}} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} | \mathsf{g})}{p_i +$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allow some mass variation What if we also take into account the support of the samples?

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{\mathcal{D}(\hat{\mu}_1|\mu_1) + \mathcal{D}(\hat{\mu}_2|\mu_2)}{\mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2)} \right)$$

2 UOT with surrogate distributions

Taking into account the support with surrogate distributions, formulation

For now, we have considered the following formulation

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq \mathbf{0}} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j} + \lambda \left(\frac{\mathsf{D}(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + \mathsf{D}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{\mathsf{p}} \right)$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allow some mass variation What if we also take into account the support of the samples?

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

Which D?

- > MMD [11]
- > OT [9]

The price is that it involves optimization over all possible joint measures

(2) UOT with surrogate distributions UOT with OT penalty

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT [10]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

 \Rightarrow do not allow some mass variation, rather *rebalance* the mass as the mass of $\hat{\mu}_i$ should be equal to μ_i $\hat{\mu}_1$ and $\hat{\mu}_2$ provide *compressed* representation of μ_1 and μ_2

(2) UOT with surrogate distributions UOT with OT penalty

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT [10]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

 \Rightarrow do not allow some mass variation, rather *rebalance* the mass as the mass of $\hat{\mu}_i$ should be equal to μ_i $\hat{\mu}_1$ and $\hat{\mu}_2$ provide *compressed* representation of μ_1 and μ_2

Can be solved with any convex solver (e.g. CVXPY), is a distance

(2) UOT with surrogate distributions UOT with OT penalty

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT [10]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

 \Rightarrow do not allow some mass variation, rather *rebalance* the mass as the mass of $\hat{\mu}_i$ should be equal to μ_i $\hat{\mu}_1$ and $\hat{\mu}_2$ provide *compressed* representation of μ_1 and μ_2

Can be solved with any convex solver (e.g. CVXPY), is a distance

• Outliers: points with small mass on the rebalanced distribution $\hat{\mu}_1$ and $\hat{\mu}_2$

Conclusion

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass

Partial OT UOT with L₂ penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

Conclusion and some challenges

Bibliography

Conclusion

Unbalanced Optimal Transport Conclusion and pen challenges

- Conclusion
 - UOT is mandatory for many applications
 - (many) efficient solvers exist
 - implementation in POT python toolbox ¹
- Some open challenges
 - outlier removal?
 - which statistical guarantees?

M. Alaya

C. Févotte

R. Flamary G. Gasso

G. Mahey F. Tobar

Unbalanced optimal transport: formulation and efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

GDR IASIS, Feb. 2025

Bibliography

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Motivation and questions

UOT for creating and destroying mass

Partial OT UOT with L₂ penalty

UOT with geometric information

Taking into account the support with surrogate distributions UOT with OT penalty

Conclusion and some challenges

Bibliography

Bibliography

Bibliography I

- [1] Clément Bonet et al. "Slicing Unbalanced Optimal Transport". In: *Transactions on Machine Learning Research* (2024).
- [2] Nicolas Bonneel and David Coeurjolly. "Spot: sliced partial optimal transport". In: ACM Transactions on Graphics (TOG) (2019).
- [3] Luis A Caffarelli and Robert J McCann. "Free boundaries in optimal transport and Monge-Ampere obstacle problems". In: *Annals of mathematics* (2010).
- [4] Kai Cao et al. "A unified computational framework for single-cell data integration with optimal transport". In: *Nature Communications* (2022).
- [5] Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. "Partial optimal tranport with applications on positive-unlabeled learning". In: *NeurIPS* (2020).
- [6] Laetitia Chapel and Romain Tavenard. "One for all and all for one: Efficient Computation of Partial Wasserstein Distances on the Line". In: *International Conference on Learning Representations*. 2025.
- [7] Laetitia Chapel et al. "Unbalanced optimal transport through non-negative penalized linear regression". In: *NeurIPS* (2021).
- [8] Matthias Liero, Alexander Mielke, and Giuseppe Savaré. "Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures". In: *Inventiones mathematicae* 211.3 (2018), pp. 969–1117.

Bibliography

Bibliography II

- [9] Chi-Heng Lin, Mehdi Azabou, and Eva Dyer. "Making transport more robust and interpretable by moving data through a small number of anchor points". In: *Proceedings of the 38th International Conference on Machine Learning*. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 6631–6641.
- [10] Guillaume Mahey et al. "Rebalanced optimal transportation: A Wasserstein penalty for unbalanced OT". In: *preprint* (2024).
- [11] Piyushi Manupriya, J Saketha Nath, and Pratik Jawanpuria. "MMD-Regularized Unbalanced Optimal Transport". In: *arXiv preprint arXiv:2011.05001* (2020).
- [12] Thibault Séjourné et al. "Unbalanced Optimal Transport meets Sliced-Wasserstein". In: *arXiv preprint arXiv:2306.07176* (2023).
- [13] G. Staerman et al. "When OT meets MoM: Robust estimation of Wasserstein Distance". In: *AISTATS*. 2021.
- [14] Karren D Yang and Caroline Uhler. "Scalable Unbalanced Optimal Transport using Generative Adversarial Networks". In: *International Conference on Learning Representations*. 2018.