On the existence of Monge maps for the Gromov–Wasserstein problem

Joint work with T. Dumont and F.-X. Vialard.

Journée Transport Optimal et ses applications (GdR IASIS) 17 février 2025

theo.lacombe@univ-eiffel.fr

THE GROMOV-WASSERSTEIN PROBLEM

Definition:

Let $X, Y \subset \mathbb{R}^d$, $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ be a cost function, and α, β be two probability measures supported on X, Y respectively. The Gromov–Wasserstein problem is defined as

$$\mathrm{GW}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \inf_{\boldsymbol{\pi}\in\Pi(\boldsymbol{\alpha},\boldsymbol{\beta})} \iint |c(\boldsymbol{x},\boldsymbol{x'}) - c(\boldsymbol{y},\boldsymbol{y'})|^2 \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x},\boldsymbol{y}) \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x'},\boldsymbol{y'}),$$

where $\Pi(\alpha, \beta)$ denote the set of transport plans between α and β , i.e. measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals α and β .

Example: $\alpha = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^{n} \delta_{y_j}$ ("point clouds"). Then $\pi \simeq$ a bistochastic matrix of size $n \times n$ ("bipartite graph matching"), i.e. $\pi_{ii} \leftrightarrow \text{the mass transported from } x_i$ to y_i

In a nutshell:

GW measures an "isometry" defect (for the cost c) between X, α and Y, β .

Théo Lacombe, LIGM, Université Gustave Eiffel

(GW)

THE GROMOV-WASSERSTEIN PROBLEM

Definition:

Let $X, Y \subset \mathbb{R}^d$, $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ be a cost function, and α, β be two probability measures supported on X, Y respectively. The Gromov–Wasserstein problem is defined as

$$\mathrm{GW}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \inf_{\boldsymbol{\pi}\in\Pi(\boldsymbol{\alpha},\boldsymbol{\beta})} \iint |c(\boldsymbol{x},\boldsymbol{x'}) - c(\boldsymbol{y},\boldsymbol{y'})|^2 \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x},\boldsymbol{y}) \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x'},\boldsymbol{y'}),$$

where $\Pi(\alpha, \beta)$ denote the set of transport plans between α and β , i.e. measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals α and β .

Example: $\alpha = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^{n} \delta_{y_j}$ ("point clouds"). Then $\pi \simeq$ a bistochastic matrix of size $n \times n$ ("bipartite graph matching"), i.e. $\pi_{ii} \leftrightarrow$ the mass transported from x_i to y_i

Question 1: Under which conditions are the solution of (GW) *deterministic*, that is of the form $(id, T)_{\#\alpha}$ for some measurable map T?

Théo Lacombe, LIGM, Université Gustave Eiffel

(GW)

THE GROMOV-WASSERSTEIN PROBLEM

Definition:

Let $X, Y \subset \mathbb{R}^d$, $c : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ be a cost function, and α, β be two probability measures supported on X, Y respectively. The Gromov–Wasserstein problem is defined as

$$\mathrm{GW}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \inf_{\boldsymbol{\pi}\in\Pi(\boldsymbol{\alpha},\boldsymbol{\beta})} \iint |c(\boldsymbol{x},\boldsymbol{x'}) - c(\boldsymbol{y},\boldsymbol{y'})|^2 \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x},\boldsymbol{y}) \mathrm{d}\boldsymbol{\pi}(\boldsymbol{x'},\boldsymbol{y'}),$$

where $\Pi(\alpha,\beta)$ denote the set of transport plans between α and β , i.e. measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals α and β .

Example: $\alpha = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^{n} \delta_{y_j}$ ("point clouds"). Then $\pi \simeq$ a bistochastic matrix of size $n \times n$ ("bipartite graph matching"), i.e. $\pi_{ij} \leftrightarrow$ the mass transported from x_i to y_j

Question 1: Under which conditions are the solution of (GW) *deterministic*, that is of the form $(id, T)_{\#\alpha}$ for some measurable map T?

Question 2: Are there instances where GW is easy to compute? e.g. if d = 1?

Théo Lacombe, LIGM, Université Gustave Eiffel

(GW)

Optimal transport maps for $\ensuremath{\mathrm{GW}}$

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\int \int |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$. Then, any $\tilde{\pi}^*$ minimizes $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Idea of proof: In general, introduce the bilinear relaxation $F:(\pi,\gamma)\mapsto \iint k d\pi \otimes \gamma = \langle \pi, k\gamma \rangle$, with k symmetric, bilinear and negative on span({ $\pi - \gamma, \pi, \gamma \in \Pi(\alpha, \beta)$ }). Then, let (π^*, γ^*) minimize F (in particular, γ^* minimizes $\pi \mapsto F(\pi^*, \pi)$), and observe that it yields $\langle \pi^* - \gamma^*, k(\pi^* - \gamma^*) \rangle \ge 0$, hence = 0, hence $(\pi^* - \gamma^*) \in \ker(k)$, and thus $F(\pi^*, \pi^*) = F(\pi^*, \gamma^*)$. It means that if π^* minimizes $\pi \mapsto F(\pi, \pi)$, it also minimizes $F(\pi^*, \pi)$, and vice-versa. It turns out that $k(x, x', y, y') = |c(x, x') - c(y, y')|^2$ is indeed negative (on measures of mass 0) for the two costs considered in this work.

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\int \int |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Observation: This problem is linear in π . It is the Optimal Transportation problem between α and β for the (unknown...) cost C_{π^*} . Thanks to [Brenier 1987, Villani 2008, McCann 2011, Moameni 2016], we know that if α has a Lebesgue density, we know sufficient conditions on the cost $C_{\pi^{\star}}$ to ensure that minimizers of (OT) are induced by transport maps. Namely:

Proposition: [Moameni 2016]

If α has a density and $C: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ satisfies

 $\forall x_0, y_0, |\{y \mid \nabla_x C(x_0, y) = \nabla_x C(x_0, y_0)\}| \leq m, (m-\text{twist})$

then any minimizer of $\pi \mapsto \langle C, \pi \rangle$ in $\Pi(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is supported on the union of (at most) m transport maps.

In a nutshell:

If $\nabla_x C$ is "*m*-injective", each x is sent to (at most) m y.

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\int \int |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Observation: This problem is linear in π . It is the Optimal Transportation problem between α and β for the (unknown...) cost C_{π^*} . Thanks to [Brenier 1987, Villani 2008, McCann 2011, Moameni 2016], we know that if α has a Lebesgue density, we know sufficient conditions on the cost $C_{\pi^{\star}}$ to ensure that minimizers of (OT) are induced by transport maps. Namely:

Proposition: [Moameni 2016]

If α has a density and $C: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ satisfies

 $\forall \mathbf{x_0}, \mathbf{y_0}, |\{\mathbf{y} \mid \nabla_x C(\mathbf{x_0}, \mathbf{y}) = \nabla_x C(\mathbf{x_0}, \mathbf{y_0})\}| \leq m, (m-\text{twist})$

then any minimizer of $\pi \mapsto \langle C, \pi \rangle$ in $\Pi(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is supported on the union of (at most) m transport maps.

In a nutshell:

If $\nabla_x C$ is "m-injective", each x is sent to (at most) m y.

Question: does $C_{\pi^{\star}}$ satisfy the *m*-twist condition?

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Observation: This problem is linear in π . It is the Optimal Transportation problem between α and β for the (unknown...) cost C_{π^*} . Thanks to [Brenier 1987, Villani 2008, McCann 2011, Moameni 2016], we know that if α has a Lebesgue density, we know sufficient conditions on the cost $C_{\pi^{\star}}$ to ensure that minimizers of (OT) are induced by transport maps. Namely:

Proposition: [Moameni 2016]

If α has a density and $C: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ satisfies

 $\forall x_0, y_0, |\{y \mid \nabla_x C(x_0, y) = \nabla_x C(x_0, y_0)\}| \leq m, (m-\text{twist})$

then any minimizer of $\pi \mapsto \langle C, \pi \rangle$ in $\Pi(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is supported on the union of (at most) m transport maps.

In a nutshell:

If $\nabla_x C$ is "*m*-injective", each x is sent to (at most) m y.

Question: does $C_{\pi^{\star}}$ satisfy the *m*-twist condition? Answer: No (in general).

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Inner-product case: if $c = \langle \cdot, \cdot \rangle$, observe that $(\mathsf{GW}) \Leftrightarrow \min_{\pi} - \iint \langle x, x' \rangle \langle y, y' \rangle \, \mathrm{d}\pi^{\star}(x', y') \, \mathrm{d}\pi(x, y) \Rightarrow \text{ wlog } C_{\pi^{\star}}(x, y) = - \langle M^{\star}x, y \rangle$ with $M^* \coloneqq \int x' y'^T d\pi^*(x', y')$.

If M^{\star} is of full rank, $\nabla_x C_{\pi^{\star}}(x, y) = -(M^{\star})^T y$ that is injective $\Rightarrow 1$ -twist condition $\Rightarrow \exists$ optimal transport maps!^a Otherwise...?

Idea: Up to a Singular Value Decomposition, M^{\star} is a projection and, on the image of the projection, the 1-twist condition is satisfied so we get the existence of a transport map. Can we lift it?

^aAlready proved by Vayer et al.

Optimal transport maps for GW

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Dumont, L, Vialard, 2024], "Brenier theorem for fiber-invariant costs", Informal

Let $\alpha, \beta \in \mathcal{P}(E)$, κ a cost function, and $\varphi: E \to B$ such that (i) $\varphi \# \mu \ll \operatorname{Vol}(B)$, (ii) $\varphi \# \alpha$ -a.e., the fiber $\varphi^{-1}(u)$ is a complete manifold (iii) $\varphi \# \alpha$ -a.e., the disintegration α_u of α wrt φ is $\ll \operatorname{Vol}(\varphi^{-1}(u))$, (iv) $\kappa(x, y) = \tilde{\kappa}(\varphi(x), \varphi(y))$ with $\tilde{\kappa}$ twisted on B. Then \exists an optimal transport map between α and β (with some "gradient of convex function" structure on t_B and all $(T_u)_u$).

Remark: We have to ensure that the glued map $(u, x) \mapsto T_u(x)$ is measurable. plans" of Fontbona et al. 2010.

Théo Lacombe, LIGM, Université Gustave Eiffel

 \rightarrow Adapt a result of "measurable selection of transport"

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Dumont, L, Vialard, 2024], "Brenier theorem for fiber-invariant costs", Informal

Let $\alpha, \beta \in \mathcal{P}(E)$, κ a cost function, and $\varphi: E \to B$ such that (i) $\varphi \# \mu \ll \operatorname{Vol}(B)$, (ii) $\varphi \# \alpha$ -a.e., the fiber $\varphi^{-1}(u)$ is a complete manifold (iii) $\varphi \# \alpha$ -a.e., the disintegration α_u of α wrt φ is $\ll \operatorname{Vol}(\varphi^{-1}(u))$, (iv) $\kappa(x, y) = \tilde{\kappa}(\varphi(x), \varphi(y))$ with $\tilde{\kappa}$ twisted on B. Then \exists an optimal transport map between α and β (with some "gradient of convex function" structure on t_B and all $(T_u)_u$).

Théo Lacombe, LIGM, Université Gustave Eiffel

Fibers are spheres (except at |x| = 0 but we work a.e.), $\tilde{\kappa}$ is the quadratic cost on $B = \mathbb{R} \Rightarrow$ you can prove existence

Optimal transport maps for GW

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Dumont, L, Vialard, 2024], "Brenier theorem for fiber-invariant costs", Informal

Let $\alpha, \beta \in \mathcal{P}(E)$, κ a cost function, and $\varphi: E \to B$ such that (i) $\varphi \# \mu \ll \operatorname{Vol}(B)$, (ii) $\varphi \# \alpha$ -a.e., the fiber $\varphi^{-1}(u)$ is a complete manifold (iii) $\varphi \# \alpha$ -a.e., the disintegration α_u of α wrt φ is $\ll \operatorname{Vol}(\varphi^{-1}(u))$, (iv) $\kappa(x, y) = \tilde{\kappa}(\varphi(x), \varphi(y))$ with $\tilde{\kappa}$ twisted on B. Then \exists an optimal transport map between α and β (with some "gradient of convex function" structure on t_B and all $(T_u)_u$).

Théo Lacombe, LIGM, Université Gustave Eiffel

There always exist optimal transport maps for the Gromov–Wasserstein problem with inner-product

Optimal transport maps for GW

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})$$

Quadratic case: Assume now that $c = |\cdot - \cdot|^2$. We get $C_{\pi^*}(x, y) = -|x|^2 |y|^2 - 4 \langle M^* x, y \rangle$ (still with $M^* = \int x'^T y' d\pi^*(x', y')$).

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$. Then, any $\tilde{\pi}^*$ minimizes $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}$$

Quadratic case: Assume now that $c = |\cdot - \cdot|^2$. We get $C_{\pi^*}(x, y) = -|x|^2 |y|^2 - 4 \langle M^* x, y \rangle$ (still with $M^* = \int x'^T y' d\pi^*(x', y')$).

Proposition:

If M^{\star} is of rank d or d-1, the 2-twist condition is satisfied (idea: solutions of the equation $\nabla_x c(x,y) = \nabla_x c(x,y')$ are given by the intersection of a 1D-line and a d-1-sphere), \Rightarrow there exist "2-maps". If M^{\star} is of rank $\leq d - 2...$

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}$$

Quadratic case: Assume now that $c = |\cdot - \cdot|^2$. We get $C_{\pi^*}(x, y) = -|x|^2 |y|^2 - 4 \langle M^* x, y \rangle$ (still with $M^* = \int x'^T y' d\pi^*(x', y')$).

Proposition:

If M^{\star} is of rank d or d-1, the 2-twist condition is satisfied (idea: solutions of the equation $\nabla_x c(x,y) = \nabla_x c(x,y')$ are given by the intersection of a 1D-line and a d-1-sphere), \Rightarrow there exist "2-maps". If M^{\star} is of rank $\leq d - 2...$ there exists an optimal transport map!

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\int \int |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $GW(\alpha, \beta)$. Then, any $\tilde{\pi}^*$ minimizes $GW(\alpha, \beta)$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y}) | C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol$$

Quadratic case: Assume now that $c = |\cdot - \cdot|^2$. We get $C_{\pi^*}(x, y) = -|x|^2 |y|^2 - 4 \langle M^* x, y \rangle$ (still with $M^* = \int x'^T y' d\pi^*(x', y')$).

Proposition:

If M^{\star} is of rank d or d-1, the 2-twist condition is satisfied (idea: solutions of the equation $\nabla_x c(x,y) = \nabla_x c(x,y')$ are given by the intersection of a 1D-line and a d-1-sphere), \Rightarrow there exist "2-maps". If M^{\star} is of rank $\leq d - 2...$ there exists an optimal transport map!

Sketch of proof: This time, the "projection" φ is of the form $\varphi(x) = (x_H, |x_{\perp}|^2)$, with $x_H \in \mathbb{R}^{\operatorname{rk}(M^*)}$ and $x_{\perp} \in \mathbb{R}^{d-\operatorname{rk}(M^*)}$, the resulting cost $\tilde{\kappa}$ is twisted and the fibers are spheres of dimension $d - 1 - \operatorname{rk}(M^{\star})$.

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\int \int |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Proposition: [Konno 1976, Séjourné et al. 2021]

Let $c = |\cdot - \cdot|^2$ or $c = \langle \cdot, \cdot \rangle$. Let π^* solve $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$. Then, any $\tilde{\pi}^*$ minimizes $\mathrm{GW}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ if and only if it minimizes

$$\Pi(\boldsymbol{\alpha},\boldsymbol{\beta}) \ni \pi \mapsto \int_{\boldsymbol{x},\boldsymbol{y}} \underbrace{\left(\int_{\boldsymbol{x}',\boldsymbol{y}'} |c(\boldsymbol{x},\boldsymbol{x}') - c(\boldsymbol{y},\boldsymbol{y}')|^2 \mathrm{d}\pi^{\star}(\boldsymbol{x}',\boldsymbol{y}')\right)}_{=:C_{\pi^{\star}}(\boldsymbol{x},\boldsymbol{y})} \mathrm{d}\pi(\boldsymbol{x},\boldsymbol{y}) = \langle C_{\pi^{\star}}$$

Quadratic case: Assume now that $c = |\cdot - \cdot|^2$. We get $C_{\pi^*}(x, y) = -|x|^2 |y|^2 - 4 \langle M^* x, y \rangle$ (still with $M^* = \int x'^T y' d\pi^*(x', y')$).

Proposition:

If M^{\star} is of rank d or d-1, the 2-twist condition is satisfied (idea: solutions of the equation $\nabla_x c(x,y) = \nabla_x c(x,y')$ are given by the intersection of a 1D-line and a d-1-sphere), \Rightarrow there exist "2-maps". If M^{\star} is of rank $\leq d - 2...$ there exists an optimal transport map!

Sketch of proof: This time, the "projection" φ is of the form $\varphi(x) = (x_H, |x_{\perp}|^2)$, with $x_H \in \mathbb{R}^{\mathrm{rk}(M^*)}$ and $x_{\perp} \in \mathbb{R}^{d-\mathrm{rk}(M^*)}$, the resulting cost $\tilde{\kappa}$ is twisted and the fibers are spheres of dimension $d - 1 - \operatorname{rk}(M^{\star})$.

Remark: This argument fails when $rk(M^*) = d - 1$ because fibers are $\{\pm x_{\perp}\} \rightarrow$ cannot build maps between fibers.

Optimal transport maps for GW

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Tightness? For the quadratic cost $c = |\cdot - \cdot|^2$, we proved that if $rk(M^*) \leq d-2$, there exists an optimal Monge map, but we only have 2-maps if M^{\star} is of higher rank... Did we miss something?

Optimal transport maps for GW

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Tightness? For the quadratic cost $c = |\cdot - \cdot|^2$, we proved that if $rk(M^{\star}) \leq d-2$, there exists an optimal Monge map, but we only have 2-maps if M^{\star} is of higher rank... Did we miss something?

Conjecture: No (only numerical evidence though).

More precisely, we adversarially build configurations for which the optimal GW plan looks like an actual 2-map.

Remark: Several layers of approximation/discretization :

- Discretize the ground space \mathbb{R} (starting from α with density),
- in dim 1, $M^{\star} \in [m_{\min}, m_{\max}]$ with tractable $m_{\min/\max}$, and thus solve the OT problem with cost $c_m(\mathbf{x}, \mathbf{y}) = -\mathbf{x}^2 \mathbf{y}^2 - 4m\mathbf{x}\mathbf{y}$ for m in a discretization of this segment, yielding π_m^{\star} , and then evaluate the GW performance of all π_m^{\star} to find the actual optimal GW plan \rightarrow need stability results to make this rigorous.

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Observation: Assume d = 1, $c = |\cdot - \cdot|^2$, and let $\alpha = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$, with $x_1 \leq \ldots \leq x_n$ and $y_1 \leq \ldots y_n$. It would be nice if the increasing mapping $(x_i \mapsto y_i)$ or the decreasing one $(x_i \mapsto y_{n+1-i})$ would be optimal.

• Empirically satisfied, works well in applications...

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Observation: Assume d = 1, $c = |\cdot - \cdot|^2$, and let $\alpha = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$, with $x_1 \leq \ldots \leq x_n$ and $y_1 \leq \ldots y_n$. It would be nice if the increasing mapping $(x_i \mapsto y_i)$ or the decreasing one $(x_i \mapsto y_{n+1-i})$ would be optimal.

- Empirically satisfied, works well in applications...
- ... But [Beinhart et al., 2022] provides a counter-example!

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Observation: Assume d = 1, $c = |\cdot - \cdot|^2$, and let $\alpha = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$, with $x_1 \leq \ldots \leq x_n$ and $y_1 \leq \ldots y_n$. It would be nice if the increasing mapping $(x_i \mapsto y_i)$ or the decreasing one $(x_i \mapsto y_{n+1-i})$ would be optimal.

- Empirically satisfied, works well in applications...
- ... But [Beinhart et al., 2022] provides a counter-example!

(Open) Question: Why does it work "in practice" and only fails on "adversarial" examples?

Recall: GW(α, β) = inf_{$\pi \in \Pi(\alpha, \beta)$} $\iint |c(x, x') - c(y, y')|^2 d\pi(x, y) d\pi(x', y')$.

Observation: Assume d = 1, $c = |\cdot - \cdot|^2$, and let $\alpha = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\beta = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$, with $x_1 \leq \ldots \leq x_n$ and $y_1 \leq \ldots y_n$. It would be nice if the increasing mapping $(x_i \mapsto y_i)$ or the decreasing one $(x_i \mapsto y_{n+1-i})$ would be optimal.

- Empirically satisfied, works well in applications...
- ... But [Beinhart et al., 2022] provides a counter-example!

(Open) Question: Why does it work "in practice" and only fails on "adversarial" examples?

(Partial) Answer (informal): if (say) x_n and y_n are far away from the others $(x_i, y_i)_i$, they must be matched together, and this "forces" a monotone (increasing) matching ("long-range interactions dominate").

Conclusion & Some remaining questions

Conclusion :

- ∃ (Gromov–)Monge map for GW with the inner-product cost,
- \exists 2-maps for GW with quadratic cost, and maps provided the covariance of a solution π^* is sufficiently singular. Numerical examples suggests the tightness of this result.
- (Gromov–)Monge maps are obtained by gluing a (standard) Monge map on a projection space B and Monge maps fiber-wise.
- In 1D (and probably in higher-dimension), long-range interactions dominate and dictate the structure of the matching.

Some questions left:

- Is M^{\star} generically non-singular?
- For the quadratic cost: can we find a condition to guarantee the existence of Monge map even if M^{\star} is of full rank? (Finding a numerical counter-example was actually quite hard!)
- Can we leverage more regularity on the disintegration $(\mu_u)_u, (\nu_u)_u$ to get more regularity/structure on the Gromov–Monge map?
- Can we leverage the existence of Gromov–Monge maps in practice?
- In 1D, can we make our observations more quantitative?

Thanks :-)