ON THE EXISTENCE OF MONGE MAPS FOR THE
(GROMOV—WASSERSTEIN PROBLEM

Joint work with T. Dumont and F.-X. Vialard.

Journée Transport Optimal et ses

applications (GdR [ASIS)
17 février 2025

theo.lacombe@univ-eiffel .fr




THE GROMOV—WASSERSTEIN PROBLEM

Definition:
Let X, Y CRY c: R x R? = R, be a , and «, 0 be two probability measures supported on X, Y respectively.
The problem is defined as
Wiag) = _int | [fela,a') = clyy))Pdn(e, p)n(e', ), (GW)
mEll (e, B)
where I1(«, 3) denote the set of between o and f3, i.e. measures on R? x R? with marginals o and /3.

Example: a = S g0y, and =237 1 6, ("point clouds”). Then 7 =~ a bistochastic matrix of size n x n (“bipartite graph
matching”), i.e. m;; <> the mass transported from z; to y;

In a nutshell:

GW measures an (for the cost c) between X, and Y, 5.
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Question 2: Are there instances where GW is easy to compute? e.g. if d =17




OPTIMAL TRANSPORT MAPS FOR GW

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').




OPTIMAL TRANSPORT MAPS FOR GW

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').
Proposition: [Konno 1976, Séjourné et al. 2021]

letc=|-—-]?orc=(,-). Let m* solve GW(c, ). Then, any #* minimizes GW(«, 3) if and only if it minimizes

I, B) > 7 /xy (/x/,y/ le(z, x") — c(y,y’)]Qdﬂ*(az',y’)> dr(z,y) = (Crx, 7). (OT)

\ 7

=:Crx (z,y)

Idea of proof: In general, introduce the bilinear relaxation F' : (7,v) — [[ kdm ® v = (m, kv), with k symmetric, bilinear and
negative on span({m — v, m,v € ll(c, B)}).

Then, let (7*,v*) minimize F' (in particular, v* minimizes m — F'(7*, 7)), and observe that it yields (7* — v*, k(7* —~*)) > 0,
hence = 0, hence (7* —~*) € ker(k), and thus F (7™, 7*) = F(7*,v").

It means that if 7* minimizes 7 +— F(m,7), it also minimizes F'(7*, ), and vice-versa.

It turns out that k(z, 2", y,v") = |c(z,2') — c(y,y')|? is indeed negative (on measures of mass 0) for the two costs considered in this
work.
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Observation: This problem is in . It is the problem between « and /3 for the (unknown...) cost C«.
Thanks to [Brenier 1987, Villani 2008, McCann 2011, Moameni 2016], we know that if o has a Lebesgue density, we know sufficient
conditions on the cost C';+ to ensure that minimizers of (OT) are induced by transport maps. Namely:

Proposition: [Moameni 2016] In a nutshell:

If o has a density and C : R? x R? — R satisfies If V;C'is “m-injective”, each z is sent to (at most) m y.

V2o, Y0, [{yl VaC(z0,y) = VoC(10,%0)}| < m, (m-twist)

then any minimizer of m — (C,7) in II(«, B) is supported on
the union of (at most) m transport maps.
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OPTIMAL TRANSPORT MAPS FOR GW

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').
Proposition: [Konno 1976, Séjourné et al. 2021]

letc=|-—-]?orc=(,-). Let m* solve GW(c, ). Then, any #* minimizes GW(«, 3) if and only if it minimizes

I, B) > 7 /my (/x/,y, le(z, x") — c(y,y’)]Qdﬂ*(aj’,y’)> dr(z,y) = (Crx, 7). (OT)
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Inner-product case: if ¢ = (-,), observe that
(GW) & min, — [f (z,2) (y,y") dm*(2', y")d7(2,y) = wlog Cr«(v,y) = — (M~ z,y)
with M* = [ o'y Tdr*(2/, ).

If M* is of full rank, V,Cr«(2,y) = —(M*)1y that is injective = 1-twist condition = 3 optimal transport maps!? Otherwise...?

ldea: Up to a Singular Value Decomposition, M * is a projection and, on the image of the projection, the 1-twist condition is satisfied so
we get the existence of a transport map. Can we lift it?

aAlready proved by Vayer et al.




OPTIMAL TRANSPORT MAPS FOR GW

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

Proposition: [Dumont, L, Vialard, 2024], “Brenier theorem for fiber-invariant costs”, Informal

Let o, 6 € P(F), k a cost function, and ¢ : E — B such that (i) p#u < Vol(B), (ii) p#a-a.e., the o 1(u) is a complete
manifold (iii) p#a-a.e., the disintegration o, of a wrt ¢ is < Vol(p~1(u)), (iv) k(z,y) = &(p(2), o(y)) with & .
Then 3 an optimal transport map between o and § (with some “gradient of convex function” structure on ¢tz and all (73,),).

Remark: We have to ensure that the glued map

(u,z) — T, (x) is measurable.

— Adapt a result of “measurable selection of transport
plans” of Fontbona et al. 2010.
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Then 3 an optimal transport map between o and § (with some “gradient of convex function” structure on ¢tz and all (73,),).

Example: E =RY, s(x,y) = (|z| — |y|)?, then take
x|z
Fibers are spheres (except at |z| = 0 but we work a.e.), &

Ko [y ,
E @ is the quadratic cost on B = R = you can prove existence
Ty of maps for this cost.
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Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

Proposition: [Dumont, L, Vialard, 2024], “Brenier theorem for fiber-invariant costs”, Informal

Let o, 6 € P(F), k a cost function, and ¢ : E — B such that (i) p#u < Vol(B), (ii) p#a-a.e., the o 1(u) is a complete
manifold (iii) p#a-a.e., the disintegration o, of a wrt ¢ is < Vol(p~1(u)), (iv) k(z,y) = &(p(2), o(y)) with & .
Then 3 an optimal transport map between o and § (with some “gradient of convex function” structure on ¢tz and all (73,),).

Corollary:

There always exist optimal transport maps for
the Gromov—Wasserstein problem with inner-product
cost.
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Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').
Proposition: [Konno 1976, Séjourné et al. 2021]
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m)y x/7y/
::C;:(a:,y)

Quadratic case: Assume now that ¢ = |- —-|?. We get Cr«(z,y) = —|z[*|y|* — 4 (M*z,y) (still with M* = [2'Ty/dn*(2’,1)).
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Quadratic case: Assume now that ¢ = |- —-|?. We get Cr«(z,y) = —|z[*|y|* — 4 (M*z,y) (still with M* = [2'Ty/dn*(2’,1)).

Proposition:

If M* is of rank d or d — 1, the 2-twist condition is satisfied (idea: solutions of the equation V c(x,y) = V,c(x,y’) are given by
the intersection of a 1D-line and a d — 1-sphere), = there exist “2-maps”.

If M* is of rank < d — 2...
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Remark: This argument fails when rk(M*) = d — 1 because fibers are {£x } — cannot build maps between fibers.




OPTIMAL TRANSPORT MAPS FOR GW

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

Tightness? For the quadratic cost ¢ = |- — - |2, we proved that if rk(M*) < d — 2, there exists an optimal Monge map, but we only have
2-maps if M™ is of higher rank... Did we miss something?
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Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

Tightness? For the quadratic cost ¢ = |- — - |2, we proved that if tk(M*) < d — 2, there exists an optimal Monge map, but we only have
2-maps if M™ is of higher rank... Did we miss something?

: : . 140 A
Conjecture: No (only numerical evidence though).
More precisely, we adversarially build configurations for 1297
which the optimal GW plan looks like an actual 2-map.
100 A
Remark: Several layers of approximation /discretization : ‘
e Discretize the ground space R (starting from « with "

density), > R e T

o indim 1, M* € [muyin, Mmax| With tractable m,in /max.
and thus solve the OT problem with cost
cm(2,y) = —2%y? — 4may for m in a discretization of
this segment, yielding 7, and then evaluate the GW
performance of all 7 to find the actual optimal GW
plan — need stability results to make this rigorous.

100 120 140




GW IN DIMENSION 1

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

n

Observation: Assumed=1,c=|-—-|* andleta=2Y"" 4, and 8= %ijl 0y, With 1 < ... <@, and y; < ...y,
It would be nice if the increasing mapping (x; — y;) or the decreasing one (z; — y,1+1-_;) would be optimal.

e Empirically satisfied, works well in applications...
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... But [Beinhart et al., 2022] provides a counter-example!
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GW IN DIMENSION 1

Recall: GW (o, B) = infrenna,p) [[ le(z,2") — ey, y") [Pdm(z, y)dm(2', y').

Observation: Assume d =1, c=|-—-[* andlet o= = 3"" 6, and == 3" 0, withz; <... <z, and y1 < ... Y.

It would be nice if the increasing mapping (x; — ;) or the decreasing one (z; — ¥,11_;) would be optimal.

e Empirically satisfied, works well in applications...

... But [Beinhart et al., 2022] provides a counter-example! _ _ _ _ _
(Open) Question: Why does it work “in practice” and only fails on

iyt “adversarial’ examples?
= 1d
/\ / o= (Partial) Answer (informal): if (say) z,, and y,, are far away from
| . the others (x;,¥;);, they must be matched together, and this
L} ]

“forces” a monotone (increasing) matching ( “long-range
interactions dominate” ).

F(o') < F(id)

21 Tn
o—0 000 © ® -
" i
o opti.
| i ——0-00 oo ! _

U1 Yn




Conclusion & Some remaining questions

Conclusion :

e J (Gromov—)Monge map for GW with the inner-product cost,

e 1 2-maps for GW with quadratic cost, and maps provided the covariance of 2 solution 7* is sufficiently singular. Numerical
examples suggests the tightness of this result.

e (Gromov—)Monge maps are obtained by gluing a (standard) Monge map on a projection space B and Monge maps fiber-wise.

e In 1D (and probably in higher-dimension), long-range interactions dominate and dictate the structure of the matching.

Some questions left:

e Is V™ generically non-singular?

e For the quadratic cost: can we find a condition to guarantee the existence of Monge map even if M* is of full rank? (Finding a
numerical counter-example was actually quite hard!)

e Can we leverage more regularity on the disintegration (fiy ), (Vu)w to get more regularity /structure on the Gromov—-Monge map?

e Can we leverage the existence of Gromov—Monge maps in practice?

e In 1D, can we make our observations more quantitative?




Thanks :-)




