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The Gromov–Wasserstein Problem
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In a nutshell:

GW measures an “isometry” defect (for the cost c) between X,α and Y , β.

α β

Definition:

Let X,Y ⊂ Rd, c : Rd × Rd → R+ be a cost function, and α, β be two probability measures supported on X,Y respectively.
The Gromov–Wasserstein problem is defined as

GW(α, β) = inf
π∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′), (GW)

where Π(α, β) denote the set of transport plans between α and β, i.e. measures on Rd × Rd with marginals α and β.

Example: α = 1
n

∑n
i=1 δxi

and β = 1
n

∑n
j=1 δyj

(”point clouds”). Then π ≃ a bistochastic matrix of size n× n (“bipartite graph
matching”), i.e. πij ↔ the mass transported from xi to yj
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Question 1: Under which conditions are the solution of (GW) deterministic,
that is of the form (id, T )#α for some measurable map T?
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Question 1: Under which conditions are the solution of (GW) deterministic,
that is of the form (id, T )#α for some measurable map T?

Question 2: Are there instances where GW is easy to compute? e.g. if d = 1?
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Proposition:

Let c = | · − · |2 or c = ⟨·, ·⟩. Let π⋆ solve GW(α, β). Then, any π̃⋆ minimizes GW(α, β) if and only if it minimizes

Π(α, β) ∋ π 7→
∫
x,y

(∫
x′,y′

|c(x, x′)− c(y, y′)|2dπ⋆(x′, y′)

)
︸ ︷︷ ︸

=:Cπ⋆ (x,y)

dπ(x, y) = ⟨Cπ⋆ , π⟩ . (OT)

[Konno 1976, Séjourné et al. 2021]

Idea of proof: In general, introduce the bilinear relaxation F : (π, γ) 7→
∫∫

kdπ ⊗ γ = ⟨π, kγ⟩, with k symmetric, bilinear and
negative on span({π − γ, π, γ ∈ Π(α, β)}).
Then, let (π⋆, γ⋆) minimize F (in particular, γ⋆ minimizes π 7→ F (π⋆, π)), and observe that it yields ⟨π⋆ − γ⋆, k(π⋆ − γ⋆)⟩ ⩾ 0,
hence = 0, hence (π⋆ − γ⋆) ∈ ker(k), and thus F (π⋆, π⋆) = F (π⋆, γ⋆).
It means that if π⋆ minimizes π 7→ F (π, π), it also minimizes F (π⋆, π), and vice-versa.
It turns out that k(x, x′, y, y′) = |c(x, x′)− c(y, y′)|2 is indeed negative (on measures of mass 0) for the two costs considered in this
work.
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=:Cπ⋆ (x,y)

dπ(x, y) = ⟨Cπ⋆ , π⟩ . (OT)

Observation: This problem is linear in π. It is the Optimal Transportation problem between α and β for the (unknown...) cost Cπ⋆ .
Thanks to [Brenier 1987, Villani 2008, McCann 2011, Moameni 2016], we know that if α has a Lebesgue density, we know sufficient
conditions on the cost Cπ⋆ to ensure that minimizers of (OT) are induced by transport maps. Namely:

Proposition:

If α has a density and C : Rd × Rd → R satisfies

∀x0, y0, |{y| ∇xC(x0, y) = ∇xC(x0, y0)}| ⩽ m, (m-twist)

then any minimizer of π 7→ ⟨C, π⟩ in Π(α, β) is supported on
the union of (at most) m transport maps.

In a nutshell:

If ∇xC is “m-injective”, each x is sent to (at most) m y.

[Konno 1976, Séjourné et al. 2021]

[Moameni 2016]
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Question: does Cπ⋆ satisfy the m-twist condition?



Théo Lacombe, LIGM, Université Gustave Eiffel
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Question: does Cπ⋆ satisfy the m-twist condition?

Answer: No (in general).
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Inner-product case: if c = ⟨·, ·⟩, observe that

(GW) ⇔ minπ −
∫∫

⟨x, x′⟩ ⟨y, y′⟩dπ⋆(x′, y′)dπ(x, y) ⇒ wlog Cπ⋆(x, y) = −⟨M⋆x, y⟩
with M⋆ :=

∫
x′y′Tdπ⋆(x′, y′).

If M⋆ is of full rank, ∇xCπ⋆(x, y) = −(M⋆)T y that is injective ⇒ 1-twist condition ⇒ ∃ optimal transport maps!a Otherwise...?

Idea: Up to a Singular Value Decomposition, M⋆ is a projection and, on the image of the projection, the 1-twist condition is satisfied so
we get the existence of a transport map. Can we lift it?

aAlready proved by Vayer et al.
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Proposition:

Let α, β ∈ P(E), κ a cost function, and φ : E → B such that (i) φ#µ ≪ Vol(B), (ii) φ#α-a.e., the fiber φ−1(u) is a complete
manifold (iii) φ#α-a.e., the disintegration αu of α wrt φ is ≪ Vol(φ−1(u)), (iv) κ(x, y) = κ̃(φ(x), φ(y)) with κ̃ twisted on B.
Then ∃ an optimal transport map between α and β (with some “gradient of convex function” structure on tB and all (Tu)u).

[Dumont, L, Vialard, 2024], “Brenier theorem for fiber-invariant costs”, Informal

Remark: We have to ensure that the glued map
(u, x) 7→ Tu(x) is measurable.
→ Adapt a result of “measurable selection of transport
plans” of Fontbona et al. 2010.
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Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
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Then ∃ an optimal transport map between α and β (with some “gradient of convex function” structure on tB and all (Tu)u).

[Dumont, L, Vialard, 2024], “Brenier theorem for fiber-invariant costs”, Informal

Example: E = Rd, κ(x, y) := (|x| − |y|)2, then take
φ : x 7→ |x|.
Fibers are spheres (except at |x| = 0 but we work a.e.), κ̃
is the quadratic cost on B = R ⇒ you can prove existence
of maps for this cost.
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Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Proposition:

Let α, β ∈ P(E), κ a cost function, and φ : E → B such that (i) φ#µ ≪ Vol(B), (ii) φ#α-a.e., the fiber φ−1(u) is a complete
manifold (iii) φ#α-a.e., the disintegration αu of α wrt φ is ≪ Vol(φ−1(u)), (iv) κ(x, y) = κ̃(φ(x), φ(y)) with κ̃ twisted on B.
Then ∃ an optimal transport map between α and β (with some “gradient of convex function” structure on tB and all (Tu)u).

[Dumont, L, Vialard, 2024], “Brenier theorem for fiber-invariant costs”, Informal

Corollary:

There always exist optimal transport maps for
the Gromov–Wasserstein problem with inner-product
cost.



Théo Lacombe, LIGM, Université Gustave Eiffel
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Recall: GW(α, β) = infπ∈Π(α,β)
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|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).
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Let c = | · − · |2 or c = ⟨·, ·⟩. Let π⋆ solve GW(α, β). Then, any π̃⋆ minimizes GW(α, β) if and only if it minimizes

Π(α, β) ∋ π 7→
∫
x,y

(∫
x′,y′

|c(x, x′)− c(y, y′)|2dπ⋆(x′, y′)

)
︸ ︷︷ ︸

=:Cπ⋆ (x,y)

dπ(x, y) = ⟨Cπ⋆ , π⟩ . (OT)

[Konno 1976, Séjourné et al. 2021]

Quadratic case: Assume now that c = | · − · |2. We get Cπ⋆(x, y) = −|x|2|y|2 − 4 ⟨M⋆x, y⟩ (still with M⋆ =
∫
x′T y′dπ⋆(x′, y′)).
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).
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Quadratic case: Assume now that c = | · − · |2. We get Cπ⋆(x, y) = −|x|2|y|2 − 4 ⟨M⋆x, y⟩ (still with M⋆ =
∫
x′T y′dπ⋆(x′, y′)).

Proposition:

If M⋆ is of rank d or d− 1, the 2-twist condition is satisfied (idea: solutions of the equation ∇xc(x, y) = ∇xc(x, y
′) are given by

the intersection of a 1D-line and a d− 1-sphere), ⇒ there exist “2-maps”.
If M⋆ is of rank ⩽ d− 2... there exists an optimal transport map!
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Théo Lacombe, LIGM, Université Gustave Eiffel
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Quadratic case: Assume now that c = | · − · |2. We get Cπ⋆(x, y) = −|x|2|y|2 − 4 ⟨M⋆x, y⟩ (still with M⋆ =
∫
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If M⋆ is of rank d or d− 1, the 2-twist condition is satisfied (idea: solutions of the equation ∇xc(x, y) = ∇xc(x, y
′) are given by

the intersection of a 1D-line and a d− 1-sphere), ⇒ there exist “2-maps”.
If M⋆ is of rank ⩽ d− 2... there exists an optimal transport map!

Sketch of proof: This time, the “projection” φ is of the form φ(x) = (xH , |x⊥|2), with xH ∈ Rrk(M⋆) and x⊥ ∈ Rd−rk(M⋆), the
resulting cost κ̃ is twisted and the fibers are spheres of dimension d− 1− rk(M⋆).
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Quadratic case: Assume now that c = | · − · |2. We get Cπ⋆(x, y) = −|x|2|y|2 − 4 ⟨M⋆x, y⟩ (still with M⋆ =
∫
x′T y′dπ⋆(x′, y′)).

Proposition:

If M⋆ is of rank d or d− 1, the 2-twist condition is satisfied (idea: solutions of the equation ∇xc(x, y) = ∇xc(x, y
′) are given by

the intersection of a 1D-line and a d− 1-sphere), ⇒ there exist “2-maps”.
If M⋆ is of rank ⩽ d− 2... there exists an optimal transport map!

Sketch of proof: This time, the “projection” φ is of the form φ(x) = (xH , |x⊥|2), with xH ∈ Rrk(M⋆) and x⊥ ∈ Rd−rk(M⋆), the
resulting cost κ̃ is twisted and the fibers are spheres of dimension d− 1− rk(M⋆).

Remark: This argument fails when rk(M⋆) = d− 1 because fibers are {±x⊥} → cannot build maps between fibers.
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Tightness? For the quadratic cost c = | · − · |2, we proved that if rk(M⋆) ⩽ d− 2, there exists an optimal Monge map, but we only have
2-maps if M⋆ is of higher rank... Did we miss something?
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Optimal transport maps for GW

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Tightness? For the quadratic cost c = | · − · |2, we proved that if rk(M⋆) ⩽ d− 2, there exists an optimal Monge map, but we only have
2-maps if M⋆ is of higher rank... Did we miss something?

Conjecture: No (only numerical evidence though).

More precisely, we adversarially build configurations for
which the optimal GW plan looks like an actual 2-map.

Remark: Several layers of approximation/discretization :
• Discretize the ground space R (starting from α with
density),

• in dim 1, M⋆ ∈ [mmin,mmax] with tractable mmin/max,
and thus solve the OT problem with cost
cm(x, y) = −x2y2 − 4mxy for m in a discretization of
this segment, yielding π⋆

m, and then evaluate the GW
performance of all π⋆

m to find the actual optimal GW
plan → need stability results to make this rigorous.
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GW in dimension 1

Recall: GW(α, β) = infπ∈Π(α,β)

∫∫
|c(x, x′)− c(y, y′)|2dπ(x, y)dπ(x′, y′).

Observation: Assume d = 1, c = | · − · |2, and let α = 1
n

∑n
i=1 δxi

and β = 1
n

∑n
j=1 δyj

, with x1 ⩽ . . . ⩽ xn and y1 ⩽ . . . yn.
It would be nice if the increasing mapping (xi 7→ yi) or the decreasing one (xi 7→ yn+1−i) would be optimal.
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Théo Lacombe, LIGM, Université Gustave Eiffel
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• Empirically satisfied, works well in applications...

... But [Beinhart et al., 2022] provides a counter-example!
(Open) Question: Why does it work “in practice” and only fails on
“adversarial” examples?

(Partial) Answer (informal): if (say) xn and yn are far away from
the others (xi, yi)i, they must be matched together, and this
“forces” a monotone (increasing) matching (“long-range
interactions dominate”).

xn

yn

x1

y1

. . .

. . .
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Conclusion & Some remaining questions

• Is M⋆ generically non-singular?
• For the quadratic cost: can we find a condition to guarantee the existence of Monge map even if M⋆ is of full rank? (Finding a
numerical counter-example was actually quite hard!)

• Can we leverage more regularity on the disintegration (µu)u, (νu)u to get more regularity/structure on the Gromov–Monge map?
• Can we leverage the existence of Gromov–Monge maps in practice?

• In 1D, can we make our observations more quantitative?

Conclusion :

• ∃ (Gromov–)Monge map for GW with the inner-product cost,
• ∃ 2-maps for GW with quadratic cost, and maps provided the covariance of a solution π⋆ is sufficiently singular. Numerical
examples suggests the tightness of this result.

• (Gromov–)Monge maps are obtained by gluing a (standard) Monge map on a projection space B and Monge maps fiber-wise.
• In 1D (and probably in higher-dimension), long-range interactions dominate and dictate the structure of the matching.

Some questions left:
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Thanks :-)


