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p € P2(R?) is fixed and has a density.
The Brenier map from p to p is written T,,.

The Brenier potential from p to y is the unique ¢, € L?(p) such that
T,=V¢, and fX ¢pdp =0 (X is the support of p, assumed connected).

The map u — T, is continuous: if (i), converges to u in (P2(R?), W),
then T, converges to T, in L?(p,R9). But non-quantitative.

Our question: “quantify this continuity". If u and v are close, how close
are T, and T,7

We look for an inequality || T), — T, [12(p) < CWa(u,v)® for some C, a
depending on p but not on p,v. And similar inequality for ¢, — ¢u | 12(,)-

Remark: a reverse inequality always holds

Vi,v € Pa(RY), (| Ty — Tulliz(prey = Wal(p, v).
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» Goal: use classical Hilbertian statistical tools on families of probability
measures while keeping some features of the Wasserstein geometry.

> Interest in numerical analysis and in statistics: 1 € P>(R?) is often
approximated by a sequence of finitely supported measures ().

» Applications to image processing: pattern recognition, detection of
differences in images, generative modelling of images, improving resolution
of images, computation of Wasserstein barycenters...

» But good practical behavior of LOT not justified mathematically.
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Proof technique: gluing (spectral). Nearly finished: p on Riemannian manifolds.



