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The problem
Theorem (Brenier)
Let c(x , y) = ∥x − y∥2 on Rd and assume that ρ ∈ P2(Rd) has a density, and
µ ∈ P2(Rd). Then there exists a unique optimal transport T : Rd → Rd .
Moreover, T = ∇ϕ with ϕ : Rd → R convex.

▶ ρ ∈ P2(Rd) is fixed and has a density.
▶ The Brenier map from ρ to µ is written Tµ.
▶ The Brenier potential from ρ to µ is the unique ϕµ ∈ L2(ρ) such that

Tµ = ∇ϕµ and
∫

X ϕµdρ = 0 (X is the support of ρ, assumed connected).
▶ The map µ 7→ Tµ is continuous: if (µn)n converges to µ in (P2(Rd), W2),

then Tµn converges to Tµ in L2(ρ,Rd). But non-quantitative.
▶ Our question: “quantify this continuity". If µ and ν are close, how close

are Tµ and Tν?
▶ We look for an inequality ∥Tµ − Tν∥L2(ρ) ⩽ CW2(µ, ν)α for some C , α

depending on ρ but not on µ, ν. And similar inequality for ∥ϕµ − ϕν∥L2(ρ).
▶ Remark: a reverse inequality always holds

∀µ, ν ∈ P2(Rd), ∥Tµ − Tν∥L2(ρ,Rd ) ⩾ W2(µ, ν).
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Linearized optimal transport

▶ Can we replace the Wasserstein distance by the distance

W2,ρ(µ, ν) = ∥Tµ − Tν∥L2(ρ,Rd ), ?

How much do (P2(Rd), W2) and the Hilbert space L2(ρ,Rd) look like?

Can we “replace" computations with µ by computations with Tµ?
▶ This is Linearized optimal transport (LOT).
▶ Goal: use classical Hilbertian statistical tools on families of probability

measures while keeping some features of the Wasserstein geometry.
▶ Interest in numerical analysis and in statistics: µ ∈ P2(Rd) is often

approximated by a sequence of finitely supported measures (µn)n.
▶ Applications to image processing: pattern recognition, detection of

differences in images, generative modelling of images, improving resolution
of images, computation of Wasserstein barycenters...

▶ But good practical behavior of LOT not justified mathematically.
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Our results
Quantitative stability holds if ρ is

▶ e−U−F with D2U ⩾ κId, κ > 0 and F ∈ L∞(Rd);
▶ ρ(x) = (1 + |x |)−β in Rd , for β > d + 2.
▶ bounded above and below on John (e.g. bounded Lipschitz) domain, or

finite union thereof. Previously: bounded convex [Delalande-Mérigot].
▶ ρ is the spherical uniform distribution ρ(x) = cd

|x |d−1 on the unit ball of Rd ;
▶ ρ has compact support and blows-up polynomially at the boundary.

Exponents of stability are sharp for potentials in the first two cases.
Quantitative stability does not hold for any exponents, in some non-John
domains, e.g. for the uniform distribution on “room-and-passage" domains:

Proof technique: gluing (spectral). Nearly finished: ρ on Riemannian manifolds.
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