New results on quantitative stability of optimal transport

Cyril Letrouit Joint work with Quentin Mérigot

CNRS – Université Paris-Saclay Laboratoire de mathématiques d'Orsay

February 17th, 2025

Theorem (Brenier)

Theorem (Brenier)

Let $c(x, y) = ||x - y||^2$ on \mathbb{R}^d and assume that $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ has a density, and $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Then there exists a unique optimal transport $T : \mathbb{R}^d \to \mathbb{R}^d$. Moreover, $T = \nabla \phi$ with $\phi : \mathbb{R}^d \to \mathbb{R}$ convex.

• $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ is fixed and has a density.

Theorem (Brenier)

- $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ is fixed and has a density.
- The **Brenier map** from ρ to μ is written T_{μ} .
- ▶ The **Brenier potential** from ρ to μ is the unique $\phi_{\mu} \in L^{2}(\rho)$ such that $T_{\mu} = \nabla \phi_{\mu}$ and $\int_{\mathcal{X}} \phi_{\mu} d\rho = 0$ (\mathcal{X} is the support of ρ , assumed connected).

Theorem (Brenier)

- $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ is fixed and has a density.
- The **Brenier map** from ρ to μ is written T_{μ} .
- ▶ The **Brenier potential** from ρ to μ is the unique $\phi_{\mu} \in L^{2}(\rho)$ such that $T_{\mu} = \nabla \phi_{\mu}$ and $\int_{\mathcal{X}} \phi_{\mu} d\rho = 0$ (\mathcal{X} is the support of ρ , assumed connected).
- The map $\mu \mapsto T_{\mu}$ is continuous: if $(\mu_n)_n$ converges to μ in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$, then T_{μ_n} converges to T_{μ} in $L^2(\rho, \mathbb{R}^d)$. But non-quantitative.

Theorem (Brenier)

- $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ is fixed and has a density.
- The **Brenier map** from ρ to μ is written T_{μ} .
- ▶ The **Brenier potential** from ρ to μ is the unique $\phi_{\mu} \in L^{2}(\rho)$ such that $T_{\mu} = \nabla \phi_{\mu}$ and $\int_{\mathcal{X}} \phi_{\mu} d\rho = 0$ (\mathcal{X} is the support of ρ , assumed connected).
- The map $\mu \mapsto T_{\mu}$ is continuous: if $(\mu_n)_n$ converges to μ in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$, then T_{μ_n} converges to T_{μ} in $L^2(\rho, \mathbb{R}^d)$. But non-quantitative.
- Our question: "quantify this continuity". If μ and ν are close, how close are T_μ and T_ν?
- ▶ We look for an inequality $||T_{\mu} T_{\nu}||_{L^{2}(\rho)} \leq CW_{2}(\mu, \nu)^{\alpha}$ for some C, α depending on ρ but not on μ, ν . And similar inequality for $||\phi_{\mu} \phi_{\nu}||_{L^{2}(\rho)}$.

Theorem (Brenier)

Let $c(x, y) = ||x - y||^2$ on \mathbb{R}^d and assume that $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ has a density, and $\mu \in \mathcal{P}_2(\mathbb{R}^d)$. Then there exists a unique optimal transport $T : \mathbb{R}^d \to \mathbb{R}^d$. Moreover, $T = \nabla \phi$ with $\phi : \mathbb{R}^d \to \mathbb{R}$ convex.

- $\rho \in \mathcal{P}_2(\mathbb{R}^d)$ is fixed and has a density.
- The **Brenier map** from ρ to μ is written T_{μ} .
- ▶ The **Brenier potential** from ρ to μ is the unique $\phi_{\mu} \in L^{2}(\rho)$ such that $T_{\mu} = \nabla \phi_{\mu}$ and $\int_{\mathcal{X}} \phi_{\mu} d\rho = 0$ (\mathcal{X} is the support of ρ , assumed connected).
- The map $\mu \mapsto T_{\mu}$ is continuous: if $(\mu_n)_n$ converges to μ in $(\mathcal{P}_2(\mathbb{R}^d), W_2)$, then T_{μ_n} converges to T_{μ} in $L^2(\rho, \mathbb{R}^d)$. But non-quantitative.
- Our question: "quantify this continuity". If μ and ν are close, how close are T_{μ} and T_{ν} ?
- ▶ We look for an inequality $||T_{\mu} T_{\nu}||_{L^{2}(\rho)} \leq CW_{2}(\mu, \nu)^{\alpha}$ for some C, α depending on ρ but not on μ, ν . And similar inequality for $||\phi_{\mu} \phi_{\nu}||_{L^{2}(\rho)}$.
- Remark: a reverse inequality always holds

 $\forall \mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \quad \|T_{\mu} - T_{\nu}\|_{L^2(\rho, \mathbb{R}^d)} \geqslant W_2(\mu, \nu).$

Can we replace the Wasserstein distance by the distance

$$W_{2,
ho}(\mu,
u) = \|T_{\mu} - T_{
u}\|_{L^{2}(
ho,\mathbb{R}^{d})},$$
 ?

How much do $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ and the Hilbert space $L^2(\rho, \mathbb{R}^d)$ look like?

Can we replace the Wasserstein distance by the distance

$$W_{2,
ho}(\mu,
u) = \|T_{\mu} - T_{
u}\|_{L^{2}(
ho,\mathbb{R}^{d})},$$
 ?

How much do $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ and the Hilbert space $L^2(\rho, \mathbb{R}^d)$ look like? Can we "replace" computations with μ by computations with T_{μ} ?

Can we replace the Wasserstein distance by the distance

$$W_{2,\rho}(\mu,
u) = \|T_{\mu} - T_{\nu}\|_{L^{2}(\rho,\mathbb{R}^{d})},$$
 ?

How much do $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ and the Hilbert space $L^2(\rho, \mathbb{R}^d)$ look like? Can we "replace" computations with μ by computations with T_{μ} ?

This is Linearized optimal transport (LOT).

- Goal: use classical Hilbertian statistical tools on families of probability measures while keeping some features of the Wasserstein geometry.
- Interest in numerical analysis and in statistics: µ ∈ P₂(ℝ^d) is often approximated by a sequence of finitely supported measures (µ_n)_n.
- Applications to image processing: pattern recognition, detection of differences in images, generative modelling of images, improving resolution of images, computation of Wasserstein barycenters...

Can we replace the Wasserstein distance by the distance

$$W_{2,\rho}(\mu,
u) = \|T_{\mu} - T_{\nu}\|_{L^{2}(\rho,\mathbb{R}^{d})},$$
 ?

How much do $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ and the Hilbert space $L^2(\rho, \mathbb{R}^d)$ look like? Can we "replace" computations with μ by computations with T_{μ} ?

This is Linearized optimal transport (LOT).

- Goal: use classical Hilbertian statistical tools on families of probability measures while keeping some features of the Wasserstein geometry.
- Interest in numerical analysis and in statistics: µ ∈ P₂(ℝ^d) is often approximated by a sequence of finitely supported measures (µ_n)_n.
- Applications to image processing: pattern recognition, detection of differences in images, generative modelling of images, improving resolution of images, computation of Wasserstein barycenters...
- But good practical behavior of LOT not justified mathematically.

Quantitative stability $\operatorname{\mathbf{holds}}$ if ρ is

Quantitative stability **holds** if ρ is

•
$$e^{-U-F}$$
 with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;

Quantitative stability \mathbf{holds} if ρ is

•
$$e^{-U-F}$$
 with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;

•
$$\rho(\mathbf{x}) = (1 + |\mathbf{x}|)^{-\beta}$$
 in \mathbb{R}^d , for $\beta > d + 2$.

Quantitative stability \mathbf{holds} if ρ is

•
$$e^{-U-F}$$
 with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;

•
$$\rho(x) = (1 + |x|)^{-\beta}$$
 in \mathbb{R}^d , for $\beta > d + 2$.

bounded above and below on John (e.g. bounded Lipschitz) domain, or finite union thereof. Previously: bounded convex [Delalande-Mérigot].

Quantitative stability \mathbf{holds} if ρ is

• e^{-U-F} with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;

•
$$\rho(x) = (1 + |x|)^{-\beta}$$
 in \mathbb{R}^d , for $\beta > d + 2$.

- bounded above and below on John (e.g. bounded Lipschitz) domain, or finite union thereof. Previously: bounded convex [Delalande-Mérigot].
- ▶ ρ is the spherical uniform distribution $\rho(x) = \frac{c_d}{|x|^{d-1}}$ on the unit ball of \mathbb{R}^d ;
- $\blacktriangleright \ \rho$ has compact support and blows-up polynomially at the boundary.

Quantitative stability \mathbf{holds} if ρ is

- e^{-U-F} with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;
- $\rho(x) = (1 + |x|)^{-\beta}$ in \mathbb{R}^d , for $\beta > d + 2$.
- bounded above and below on John (e.g. bounded Lipschitz) domain, or finite union thereof. Previously: bounded convex [Delalande-Mérigot].
- ▶ ρ is the spherical uniform distribution $\rho(x) = \frac{c_d}{|x|^{d-1}}$ on the unit ball of \mathbb{R}^d ;
- $\blacktriangleright~\rho$ has compact support and blows-up polynomially at the boundary.

Exponents of stability are sharp for potentials in the first two cases.

Quantitative stability \mathbf{holds} if ρ is

- e^{-U-F} with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;
- $\rho(x) = (1 + |x|)^{-\beta}$ in \mathbb{R}^d , for $\beta > d + 2$.
- bounded above and below on John (e.g. bounded Lipschitz) domain, or finite union thereof. Previously: bounded convex [Delalande-Mérigot].
- ▶ ρ is the spherical uniform distribution $\rho(x) = \frac{c_d}{|x|^{d-1}}$ on the unit ball of \mathbb{R}^d ;
- $\blacktriangleright~\rho$ has compact support and blows-up polynomially at the boundary.

Exponents of stability are **sharp for potentials** in the first two cases. Quantitative stability **does not hold** for any exponents, in some non-John domains, e.g. for the uniform distribution on "room-and-passage" domains:

Quantitative stability \mathbf{holds} if ρ is

- e^{-U-F} with $D^2U \ge \kappa \mathrm{Id}$, $\kappa > 0$ and $F \in L^{\infty}(\mathbb{R}^d)$;
- $\rho(x) = (1 + |x|)^{-\beta}$ in \mathbb{R}^d , for $\beta > d + 2$.
- bounded above and below on John (e.g. bounded Lipschitz) domain, or finite union thereof. Previously: bounded convex [Delalande-Mérigot].
- ▶ ρ is the spherical uniform distribution $\rho(x) = \frac{c_d}{|x|^{d-1}}$ on the unit ball of \mathbb{R}^d ;
- $\blacktriangleright~\rho$ has compact support and blows-up polynomially at the boundary.

Exponents of stability are **sharp for potentials** in the first two cases. Quantitative stability **does not hold** for any exponents, in some non-John domains, e.g. for the uniform distribution on "room-and-passage" domains:

Proof technique: gluing (spectral). Nearly finished: ρ on Riemannian manifolds.