Bridging the gap between cellular modalities with Inverse Optimal Transport

Jules Samaran February 17th, 2025

GDR OT, Lyon

Inverse Optimal Transport

Diagonal integration

Conclusion

Inverse Optimal Transport

Diagonal integration

Conclusion 00

Single-cell sequencing reveals cellular heterogeneity

Inverse Optimal Transport

Diagonal integration

Conclusion

Single-cell sequencing reveals cellular heterogeneity

Inverse Optimal Transport

Diagonal integration

Conclusion

Single-cell sequencing reveals cellular heterogeneity

Inverse Optimal Transport

Diagonal integration

Conclusion

Cellular biology is multimodal

Lähnemann et al., 2020; Mincarelli et al., 2018

Context & aims 000●0

Diagonal integration

Unpaired multimodal data are more frequent but challenging

Inverse Optimal Transport

Diagonal integration

Common and complementary information across modalities

Inverse Optimal Transport

Diagonal integration

Conclusion

Using Optimal Transport to compare cell populations

$$\begin{split} \mathcal{W}_{\varepsilon}(C) &\stackrel{\text{def}}{=} \min_{P \in \Pi(n_1, n_2)} \sum_{i, j} P_{i, j} C_{i, j} - \varepsilon \mathbf{H}\left(P\right) \\ \text{with} \quad \Pi(n_1, n_2) &\stackrel{\text{def}}{=} \{P \in \mathbb{R}^{n_1 \times n_2}_+ \text{ s.t. } P\mathbbm{1} = \frac{1}{n_1}\mathbbm{1}, P^\top \mathbbm{1} = \frac{1}{n_2}\mathbbm{1}\} \end{split}$$

Peyré et al., 2018; Cuturi et al., 2013

Inverse Optimal Transport

Diagonal integration

Conclusion

OT for genomics: Waddington-OT

Inverse Optimal Transport

Diagonal integration

Conclusion 00

OT for genomics: Waddington-OT

Diagonal integration

Inverse Optimal Transport as a metric learning problem

Given a transport plan \hat{P} , can we find a cost C for which \hat{P} is the optimal transport plan?

$$iOT(\hat{P}) \stackrel{\text{\tiny def}}{=} \min_{C \in \mathbb{R}^{n_1 \times n_2}_+} \ \mathrm{KL}(\hat{P}|P(C)) + \mathcal{R}(C)$$

with
$$P(C) = \arg \min_{Q \in \Pi(\mu_1, \mu_2)} \sum_{i,j} Q_{i,j} C_{i,j} - \varepsilon H(Q)$$

Inverse Optimal Transport

Diagonal integration •00000000000

Conclusion

Unpaired data are challenging

Inverse Optimal Transport

Diagonal integration

Conclusion

Finding a shared low dimensional latent space

Inverse Optimal Transport

Diagonal integration

Conclusion 00

A summary of our approach

Prior biological knowledge: related features bridge modalities

Inverse Optimal Transport

Diagonal integration

Conclusion

Prior biological knowledge: related features bridge modalities

- proteins are related to their corresponding coding gene
- chromatin peaks are related to genes they're close to

Inverse Optimal Transport

Diagonal integration

Prior biological knowledge: related features bridge modalities

We can use these connections to translate modalities to "common" features

Prior biological knowledge: related features bridge modalities

nverse Optimal Transport

Diagonal integration

Conclusion

Using autoencoders for dimension reduction

nverse Optimal Transport

Diagonal integration

Conclusion

Using autoencoders for dimension reduction

 $X^{(1)}$

nverse Optimal Transport

Diagonal integration

Conclusion

Using autoencoders for dimension reduction

nverse Optimal Transport

Diagonal integration

Conclusion

Using autoencoders for dimension reduction

Inverse Optimal Transport

Diagonal integration

Conclusion

Distinguishing spurious alignments

Inverse Optimal Transport

Diagonal integration

Conclusion

Matching cells using OT on the prior cost

Diagonal integration

Conclusion

Matching cells using OT on the prior cost

Inverse Optimal Transport

Diagonal integration

Conclusion

Matching cells using OT on the prior cost

Inverse Optimal Transport

Diagonal integration

Conclusion

Using iOT to align embeddings

Inverse Optimal Transport

Diagonal integration

Conclusion

Using iOT to align embeddings

Inverse Optimal Transport

Diagonal integration

Conclusion

Using iOT to align embeddings

nverse Optimal Transport

Diagonal integration

Conclusion

Using iOT to align embeddings

Goal: Enforcing the similarity between C^Y and $C^Z_{i,j} = ||Z^{(1)}_i - Z^{(2)}_j||_2^2.$

Approach:

$$\begin{split} \mathcal{L}_{\text{align}} &= \mathrm{KL}(P^Y | P^Z) + \mathcal{R}(C^Z) \\ &= \langle P^Y, C^Z \rangle + \lambda_{reg} \mathcal{W}_{\varepsilon}(C^Z) \end{split}$$

Diagonal integration

Conclusion

Integrating scRNA-seq with neuronal morphologies

Diagonal integration

Conclusion

Integrating scRNA-seq with neuronal morphologies

Diagonal integration

Morphological heterogeneity in SST neurons across depths

Inverse Optimal Transport

Diagonal integration

Morphological heterogeneity in SST neurons across depths

Inverse Optimal Transport

Diagonal integration

Conclusion

scConfluence is now available

Article Open access Published: 05 September 2024

scConfluence: single-cell diagonal integration with regularized Inverse Optimal Transport on weakly connected features

Jules Samaran, Gabriel Peyré & Laura Cantini 🖾

Nature Communications 15, Article number: 7762 (2024) Cite this article

Take home messages

- Massive unpaired datasets could be leveraged by integration
- Single-cell data present extremely diverse challenges
- Prior biological knowledge is essential to tackle these issues

verse Optimal Transport

Diagonal integration

Thanks!

