Audio signal interpolation using optimal transportation of spectrograms

David Valdivia*, Marien Renaud[†], Elsa Cazelles* and Cédric Févotte*

*IRIT, CNRS, Université de Toulouse †IMB, Université de Bordeaux

> GdR IASIS February 17, 2025

• **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT).

• **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT).

Audio signal

Time

• **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT).

- **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT).
- Idea: Treat the normalized spectrogram $\mathbf{X} \in \mathbb{R}_+^{M \times N}$ as a discrete probability distribution μ :

$$\mu := \sum_{m=1}^M \sum_{n=1}^N X_{mn} \delta_{(f_m,t_n)}.$$

Baseline approach with OT

Limit temporal transportation with structured cost matrix and UOT

