Audio signal interpolation using optimal transportation of spectrograms David Valdivia*, Marien Renaud[†], Elsa Cazelles* and Cédric Févotte* *IRIT, CNRS, Université de Toulouse †IMB, Université de Bordeaux > GdR IASIS February 17, 2025 • **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT). • **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT). ### Audio signal Time • **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT). - **Problem**: Given two audio signals \mathbf{y}^s (source) and \mathbf{y}^t (target), generate an interpolant \mathbf{y}^{α} with $\alpha \in [0,1]$, using optimal transport (OT). - Idea: Treat the normalized spectrogram $\mathbf{X} \in \mathbb{R}_+^{M \times N}$ as a discrete probability distribution μ : $$\mu := \sum_{m=1}^M \sum_{n=1}^N X_{mn} \delta_{(f_m,t_n)}.$$ ## Baseline approach with OT #### Limit temporal transportation with structured cost matrix and UOT